
Im2Learn
Manual

Version 0.1

Im2Learn (Image to Learn) was created at the National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign. We would like to acknowledge
multiple funding agencies for the support including NSF, NIH, NASA, NARA, ONR,
DARPA, NAVY and NCSA Industrial Partners. The main creators of Im2Learn are Rob
Kooper, David Clutter, Sang-Chul Lee and Peter Bajcsy with the help from graduate and
undergraduate students, namely Wei-Wen Feng, and Peter Ferak. This document represents a
current description of multiple on-going research and development efforts and hence it is
updated on a regular basis.

Revision History
Revision Date Author Notes
0.1 9/16/2005 RK,PF,PB Initial version of the document
0.2 10/31/2006 SL HSV Threshold added under Tool menu

Introduction

Table of Contents
Im2Learn Manual.. 1

Revision History ... 3

Table of Contents.. 1

Chapter 1 Introduction .. 3
1.1 Im2Learn Functionality ... 3
1.2 Im2Learn User Interface .. 3
1.3 Im2Learn Code Architecture ... 4
1.4 Application Examples.. 4

Chapter 2 How to use Im2Learn... 5
2.1 Core Code .. 5

2.1.1 ImageObject... 5
2.2 Extending Im2Learn .. 6

2.2.1 Adding Functionality ... 6
2.2.2 ImageLoader .. 8

Appendix A Example Plugin .. 13

Appendix B Speed Improvements .. 19

Appendix C Plugins .. 21
C.1 Edit .. 21

C.1.1 Copy .. 21
C.1.2 Paste .. 21

C.2 Panel .. 21
C.2.1 Class GammaDialog.. 21
C.2.2 Class ImagePCA ... 22
C.2.3 Select Band.. 23
C.2.4 Sub-area selection ... 24
C.2.5 Image Zoom .. 24

C.3 Tools.. 25
C.3.1 Bound Box... 25
C.3.2 Image Calculator ... 25
C.3.3 Image Compare ... 27
C.3.4 Treshold... 29
C.3.5 HSV Treshold.. 31

C.4 Hyperspectral .. 33
C.4.1 Convert RGB... 33

C.5 Segment... 34
C.5.1 Segment 2D Super... 34

Appendix D Software License .. 39

Introduction

Introduction

Chapter 1 Introduction
The motivation for developing Im2Learn (Image to Learn) comes from academic, government
and industrial collaborations that involve development of new computer methods and
solutions for understanding complex data sets. Images and other types of data generated by
various instruments and sensors form complex and highly heterogeneous data sets, and pose
challenges on knowledge extraction. In general, the driver for the Im2Learn suite of tools is to
address the gap between complex multi-instrument raw data and knowledge relevant to any
specific application.

The objective of the Im2Learn suite of tools is to research and develop solutions to real life
problems in the application areas of machine vision, precision farming, land use and land
cover classification, map analysis, geo-spatial information systems (GIS), synthetic aperture
radar (SAR) target and multi-spectral scene modeling, video surveillance, bio-informatics,
microscopy and medical image processing, and advanced sensor environments. The main goal
of the IM2LEARN research and development is to automate information processing of
repetitive, laborious and tedious analysis tasks and build user-friendly decision-making
systems that operate in automated or semi-automated mode in a variety of applications. The
development is based on theoretical foundations of image and video processing, computer
vision, data fusion, statistical and spectral modeling, data mining and pattern recognition,
software engineering and sensor design.

1.1 Im2Learn Functionality
The Im2Learn - Image to Learn is capable of analyzing multidimensional, multi-variate
(multi-band) image data and enables user interaction with the data. The basic set of
IM2LEARN tools also provides support for histograms, image band ranking, image statistics,
correlation matching, filtering, contour extraction, image calculator, tracking, blob analysis,
image thresholding, segmentation and Isodata clustering. The input and output interface can
handle loading and saving of individual images in several standard file formats. The current
support of standard input image file formats includes: jpg, gif, tif (Ver. 6.0 with no
compression), pgm, ppm, bmp, png, pnm, img, and an internal image format denoted as iip
(image interleaved pixels). The software also supports some of the file formats used in
Geospatial Information Systems (GIS), such as, USGS DEM (Float), ESRI IMG format,
HDF4, HDF5, LAN, GeoTiff and ESRI Shape file format. All GIS related files are loaded
with their georeferencing information that is used for geo-registration of raster and vector data
sets. The input can be a sequence of images (e.g., video frames) or a combination of bands
from several image data sources in multiple standard file formats.

1.2 Im2Learn User Interface
The Im2Learn user interface incorporates a user-friendly front end with mouse-driven
operations for selecting an area of interest and dialog-driven operations for experimenting with
parameter variations. The current visualization capabilities include image display as a set of
still selected frames (gray-scale or color), movies (temporal sequence of image bands) or plots
of attributes (band values) over a local spatial neighborhood. As part of the visualization,
numerical results can be shown using a scatter plot tool or a text area dialog.

Introduction

1.3 Im2Learn Code Architecture
Im2Learn code is decomposed into several components such as Im2Learn core, Im2Learn
extensions (re-usable plugins), Im2Learn main (custom configuration files), test routines, and
custom code driven by specific projects. This document will primarily focus on ‘Im2Learn
core’ and ‘Im2Learn extensions’ components. The ‘Im2Learn main’ component allows us to
distribute code configurations according to the needs of researchers, for example, bio-medical
plugins belong to a different configuration than geo-spatial analysis plugins. The test routines
are an integrated part of code testing in addition to auto-builds performed every night. Finally,
the custom code is a repository of Im2Learn plugins that are funded by private industry or use
libraries that do not allow code distribution.

1.4 Application Examples
Applications areas in which this tool could be used are many. Some application examples are
listed below and include bioinformatics, hydrology, precision farming, machine vision in the
semiconductor industry, topography, plant biology, medicine, automobile industry, database
retrieval, surveillance, and digital library.

Band Selection
• Unsupervised and supervised methods for selecting bands from hyperspectral

imagery.
Filtering to Achieve Noise Reduction
Image de-noising and de-blurring in microarray data.

• Image de-noising and de-blurring in microarray data.
Classification: Two and N-class classification

• Building land cover and land use maps.
• Detecting change in hydrology data.
• Mask generation for data-driven scene modeling

Matching: Searching for Well-defined Landmarks
• Image calibration
• Geo-registration

Tracking: Landmark-Tracking Applied to Microscopy Data
• Registration and alignment based on motion imagery.

Statistical Modeling: Models Applied to Aerial and Satellite Data
• Crop analysis.
• Complex multi-spectral scene modeling.

Contour Detection: Iso-contour Extraction from Historical Maps
• Environmental preservation project.

Registration: 3D volume reconstruction
• Analyses of fluorescent confocal laser scanning microscope imagery.

Stereo: 3D position estimation
• Design of hazard aware spaces

Document analysis: PDF document analysis
• Building information repository from images and text in PDF documents

How to use IM2LEARN

Chapter 2 How to use Im2Learn
Im2Learn is consists of a core set of functions and data structures, and extensions (or plugins)
that represent solutions for specific tasks. This document will first describe details about the
core parts of Im2Learn and next outline the extensions that are available at the time of writing.

2.1 Core Code
The core code of Im2Learn contains the datatypes and classes that are needed by almost all
IM2LEARN applications. This section describes the core code including the ImageObject
datatype used as image representation in memory and the functions that are associated with it.
This section also contains various classes for loading images from disk, displaying images as
well as classes for extending the Im2Learn functionality.

2.1.1 ImageObject
The heart and soul of Im2Learn is the ImageObject class. It is used to modify and display the
images and to produce all the abbreviations of it, like segmenting the image for instance.

The ImageObject class is used to store information about an image. The image is stored in row
major order with the bands interleaving the pixels (for example an image with 3 rows, 2
columns and 3 bands is stored as RGBRGBRGBRGBRGBRGB where the first triplet is the
pixel at row 1, column 1, the second triplet is the pixel at row 1, column 2 etc.). ImageObject
can be of any datatype, any number of bands (samples per pixel), rows (height) or columns
(width).

Any additional information about the image can be stored as a property associated with the
image. Properties that begin with an underscore are temporary properties and will not be
copied when the image is cloned, or saved to disk. Some common properties have their keys
predefined in this class.

How to speed up your application: This class is an abstract class, any time you call getXXX()
it will have to do a lookup to see what class really to call, and call the functions on this class.
So one speedup is to simply do the check your self, typecast the ImageObject to the
appropriate class and call the functions on this class. Do this either inside the loop or make
multiple loops for each datatype (still keeping the abstract version in case a datatype is missing
in your implementation). The fastest way is to use the getData function and typecast the
returned object to the appropriate array (byte[], double[] etc.), this will give you direct access
to the imagedata. If any data is modified computeMinMax or setMinMaxInvalid will need to
be called to mark the fact that the current minimum and maximum values associated with the
image are not valid.

An ImageObject can also be used to just store information about an image and will not have
any imagedata associated with it in that case. To test if an ImageObject has any data, use either
getData() or isDataValid(). Accessing one of the get or set functions when no data is present
will throw a NullPointer exception. No checks are done in the get and set function to see if
there is any imagedata to speed them up.

How to use IM2LEARN

2.2 Extending Im2Learn
To allow for easy extending Im2Learn a plugin architecture was designed. This architecture
allows for easily adding new functionality as well for extending the fileformats it can
recognize. First will be described how to add new functionality to Im2Learn and next will be
described how to add new fileformats.

2.2.1 Adding Functionality
To add new functionality to Im2Learn the developer will need to implement the
IM2LEARNMenu interface. This interface tells the Im2Learn system the names of the menus to
be added to the mainframe. Once the plugin is added to an imagepanel the reference to this
imagepanel is passed back to the plugin, allowing the plugin to get the ImageObject currently
shown. To be able to add help to the central helpsystem of Im2Learn the plugin needs to
implement the HelpEntry interface. Examples of the IM2LEARNMenu implementation and
HelpEntry can be found in the next two sections. A full example of a plugin for Im2Learn can
be found in Appendix A, Example Plugin.

2.2.1.1 IM2LEARNMenu
The IM2LEARNMenu class is an interface that needs to be implemented if the class is to be
appended to either the ncsa.Im2Learn.main menu or the panel. It returns a list of menu entries
that will be added to the ncsa.Im2Learn.main menu bar. If the menuitem is a menu it will be
only added to the menu if it does not already exist. If it exists the menu entries are appended to
then end of the existing menu.

// --
// IM2LEARNMenu implementation
// --
/**
 * Store the reference to the imagepanel for later use.
 * The imagepanel passed in as argument is the
 * imagepanel to which this tools is associated.
 */
public void setImagePanel(ImagePanel imagepanel) {
 this.imagepanel = imagepanel;
}

/**
 * For this tool there is no operation that works on the
 * imagepanel directly and thus we return null
 * indicating that no menu entries need to be created on
 * the panel.
 */
public JMenuItem[] getPanelMenuItems() {
 return null;
}

/**
 * Create a menu entry called Tools, and attach a
 * submenu entry to this for this class, called swap. If
 * the user selects this class
 */

How to use IM2LEARN

public JMenuItem[] getMainMenuItems() {
 JMenu menu = new JMenu("Tools");

 JMenuItem item = new JMenuItem(new AbstractAction("Swap") {
 public void actionPerformed(ActionEvent e) {
 if (!isVisible()) {
 Window win = SwingUtilities.getWindowAncestor(imagepanel);
 setLocationRelativeTo(win);
 setVisible(true);
 }
 toFront();
 }
 });
 menu.add(item);

 return new JMenuItem[] { menu };
}

/**
 * When a new image is loaded make sure that the current
 * swapped image is removed, i.e. perform a reset. Only
 * need to reset the image if this frame is visible.
 */
public void imageUpdated(ImageUpdateEvent event) {
 if (!isVisible()) {
 return;
 }
 if (event.getId() == ImageUpdateEvent.NEW_IMAGE) {
 reset();
 }
}

2.2.1.2 HelpEntry
The Im2Learn system comes with a build in help system. By using the HelpEntry interface the
developer can create help that is specific for the code that is written and add it to the build in
help system. The help system for Im2Learn is a tree of nodes, each node can have subnodes
and so on. When the user clicks on a node, the help system will first check to see if this node is
a leaf node (i.e. no subnodes are available), if this is the case the system will find the class that
added the leaf node to the help system and ask for a URL to the help documentation.

The URL that is returned can be either a URL to a webpage outside of Im2Learn or, the
preferred method, a URL that points to a HTML file that is shipped with Im2Learn. The
easiest method for the developer to create a URL to the help page, is to place the HTML file,
and all associated images, in a directory called help. In the code the developer can than point
to the HTML file using this.getClass().getResource("help/file.html"). Using this
code will make sure that the help file can be found even if the class files (and the HTML and
image files) are put in a jar file for distribution.

// --
// HelpEntry implementation
// --
/**

How to use IM2LEARN

 * Create a node for the help system called Tools, and a
 * leafnode called Swap. The leafnode will contain the
 * documentation about this function.
 */
public HelpTopic[] getTopics() {
 HelpTopic topic = new HelpTopic("Tools");
 new HelpTopic("Swap", topic);
 return new HelpTopic[] { topic };
}

/**
 * Return the right documentation depending on what node
 * is selected, in this case only the Swap node should
 * exist.
 */
public URL getHelp(String menu) {
 if (menu.equals("Swap")) {
 return getClass().getResource("help/swap.html");
 } else {
 return null;
 }
}

2.2.2 ImageLoader
To load an image from disk or to save an image to disk the developer can use the
ImageLoader class. This class has static methods readImage methods that will take a String
as argument that points to the file that needs to be loaded. The ImageLoader class will then use
the loaders provided to find the best loader to load the image. When saving an image the
developer can call writeImage with the ImageObject and the filename as a String. Again the
ImageLoader will find the best writer to save the image.

The ImageLoader can be extended to include new readers and writers by the application
developer. To do this the extension will need to implement the ImageReader class to be able
to load images and the ImageWriter class to write images to disk.

2.2.2.1 ImageReader
To be able to load a new fileformat the ImageReader interface needs to be implemented. The
example gives an implementation of an ImageReader that can read serialized ImageObjects
from disk.

The ImageLoader will first call canRead with the filename and the first 100 bytes of the file.
Based on either one of those the loader should decide if it can read the rest of the file. Most
images will have a magic set of bytes at the beginning that identify what type of image it is,
for example GIF files start always with GIF.

Next either readImageHeader or readImage is called to load the image from disk. This
function should return a reference to the ImageObject that was loaded from disk.

import ncsa.Im2Learn.core.datatype.ImageException;
import ncsa.Im2Learn.core.datatype.ImageObject;

How to use IM2LEARN

import ncsa.Im2Learn.core.datatype.SubArea;
import ncsa.Im2Learn.core.io.ImageReader;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import java.io.*;

/**
 * Load an object that was saved as a serialized object. This class
 * will load an object that was previously saved as an serialized
 * object. This could fail if the object uses classes in the
 * properties that are not known to the current instance.
 */
public class ObjectLoader implements ImageReader {
 private static Log logger =
 LogFactory.getLog(ObjectLoader.class);

 /**
 * Try and find a reader, if one found we can actually read the
 * file.
 *
 * @param filename of file to be read.
 * @param hdr used for magic number
 * @return true if image can be read.
 */
 public boolean canRead(String filename, byte[] hdr) {
 return (filename.endsWith(".object"));
 }

 /**
 * Loads an image and returns the imageobject containing the
 * image.
 *
 * @param filename of the file to load.
 * @param subarea of the file to load, or null to load full
 * image.
 * @param sampling is the sampling that needs to be done.
 * @return the imageobject containing the loaded image
 * @throws java.io.IOException if an error occurrs reading the
 * file.
 */
 public ImageObject readImage(String filename, SubArea subarea,
 int sampling) throws IOException {
 return readImage(filename, subarea, sampling, false);
 }

 /**
 * This function will read the file and return an imageobject
 * that contains the information of the image but not the
 * imagedata itself.
 *
 * @param filename of the file to be read
 * @return the file as an imageobject except of the imagedata.
 * @throws java.io.IOException if the file could not be read.
 */
 public ImageObject readImageHeader(String filename)

How to use IM2LEARN

 throws IOException {
 return readImage(filename, null, 1, true);
 }

 /**
 * Return a list of extensions this class can read.
 *
 * @return a list of extensions that are understood by this
 * class.
 */
 public String[] readExt() {
 return new String[]{"object"};
 }

 /**
 * Loads an image and returns the imageobject containing the
 * image.
 *
 * @param filename of the file to load.
 * @param subarea of the file to load, or null to load full
 * image.
 * @param sampling is the sampling that needs to be done.
 * @param header true if only header needs to be read.
 * @return the imageobject containing the loaded image
 * @throws java.io.IOException if an error occurrs reading the
 * file.
 */
 public ImageObject readImage(String filename, SubArea subarea,
 int sampling, boolean header)
 throws IOException {
 FileInputStream fis = new FileInputStream(filename);
 ObjectInputStream inp = new ObjectInputStream(fis);
 ImageObject result;
 try {
 result = (ImageObject) inp.readObject();
 } catch (ClassNotFoundException exc) {
 logger.debug("Could not load file.", exc);
 throw(new IOException(exc.toString()));
 } catch (ClassCastException exc) {
 logger.debug("Could not load file.", exc);
 throw(new IOException(exc.toString()));
 }
 inp.close();
 fis.close();

 // subsample and subarea
 if (subarea != null) {
 try {
 result = result.crop(subarea);
 } catch (ImageException exc) {
 logger.debug("Could not crop file.", exc);
 throw(new IOException(exc.toString()));
 }
 }
 if (sampling != 1) {
 try {
 result = result.scale(sampling);

How to use IM2LEARN

 } catch (ImageException exc) {
 logger.debug("Could not sample file.", exc);
 throw(new IOException(exc.toString()));
 }
 }

 return result;
 }

 /**
 * Return the description of the reader.
 *
 * @return decription of the reader
 */
 public String getDescription() {
 return "Java Serialized Loader";
 }
}

2.2.2.2 ImageWriter
To be able to write a new file format the ImageWriter interface needs to be implemented. The
example gives an implementation of an ImageWriter that can read serialized ImageObjects to
disk.

The ImageLoader will first call canWrite with the filename. Based on the filename the writer
should decide if it can write the ImageObject to disk. Most images will have specific
extensions that identify what type of image it is, for example GIF files start use gif.

Next either writeImage is called to write the image to disk.

import ncsa.Im2Learn.core.datatype.ImageObject;
import ncsa.Im2Learn.core.io.ImageWriter;

import java.io.*;

/**
 * Write a serialized ImageObject to disk. This class is responsible
 * for serializing an ImageObject and writing the bytes to disk that
 * make up the ImageObject.
 */
public class ObjectLoader implements ImageWriter {
 /**
 * Returns true if the class can write the file.
 *
 * @param filename of the file to be written.
 * @return true if the file can be written by this class.
 */
 public boolean canWrite(String filename) {
 return filename.endsWith(".object");
 }

 /**
 * This function will write the imageobject to a file.
 *

How to use IM2LEARN

 * @param filename of the file to be written.
 * @param imageobject the image image to be written.
 * @throws java.io.IOException if the file could not be written.
 */
 public void writeImage(String filename, ImageObject imageobject)
 throws IOException {
 FileOutputStream fos = new FileOutputStream(filename);
 ObjectOutput out = new ObjectOutputStream(fos);
 out.writeObject(imageobject);
 out.close();
 fos.close();
 }

 /**
 * Return a list of extentions this class can write.
 *
 * @return a list of extentions that are understood by this
 * class.
 */
 public String[] writeExt() {
 return new String[]{"object"};
 }

 /**
 * Return the description of the writer.
 *
 * @return decription of the writer
 */
 public String getDescription() {
 return "Java Serialized Loader";
 }
}

Example Plugin

Appendix A Example Plugin

This appendix shows how to build a plugin.

package ncsa.Im2Learn.ext.test;

import javax.swing.*;

import java.awt.*;
import java.awt.event.ActionEvent;

import java.net.URL;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import ncsa.Im2Learn.core.datatype.ImageObject;
import ncsa.Im2Learn.core.display.*;

// --
public class ExamplePlugin extends IM2LEARNFrame
 implements IM2LEARNMenu, HelpEntry {
 /**
 * Reference to the imagepanel this menu is associated
 * with.
 */
 private ImagePanel imagepanel;

 /**
 * Preview of the swap operation.
 */
 private ImagePanel ipPreview;

 /**
 * Logger used for debug and warning messages.
 */
 static private Log logger = LogFactory.
 getLog(ExamplePlugin.class);

 /**
 * Create the UI for this menu. Show a preview panel in the
 * middle of the frame and buttons below to do the swap,
 * apply changes to imagepanel and close the window.
 *
 */
 public ExamplePlugin() {
 super("COLOR SWAP");

 imagepanel = null;
 createUI();
 }

Example Plugin

 /**
 * Called when the user hides the window.
 */
 public void hiding() {
 ipPreview.setImageObject(null);
 }

 /**
 * Called when the user shows the window.
 */
 public void showing() {
 reset();
 }

 /**
 * Create the UI. The UI consists of a preview imagepanel
 * which will show the swapped image, and three buttons to
 * swap the image, apply changes to the imagepanel and close
 * the window.
 */
 private void createUI() {
 ipPreview = new ImagePanel();
 ipPreview.setAutozoom(true);
 getContentPane().add(ipPreview, BorderLayout.CENTER);

 JPanel pnlButtons = new JPanel(new FlowLayout());
 pnlButtons.add(new JButton(new AbstractAction("Swap") {
 public void actionPerformed(ActionEvent e) {
 swap();
 }
 }));
 pnlButtons.add(new JButton(new AbstractAction("Apply") {
 public void actionPerformed(ActionEvent e) {
 if (ipPreview.getImageObject() == null) {
 swap();
 }
 ImageObject imgobj = ipPreview.getImageObject();
 imagepanel.setImageObject(imgobj);
 }
 }));
 pnlButtons.add(new JButton(new AbstractAction("Close") {
 public void actionPerformed(ActionEvent e) {
 ExamplePlugin.this.setVisible(false);
 }
 }));
 getContentPane().add(pnlButtons, BorderLayout.SOUTH);

 pack();
 }

 /**
 * Set the image shown in the preview to null.
 */
 private void reset() {
 ipPreview.setImageObject(null);
 }

Example Plugin

 /**
 * Change the colors of the imageobject. This will take
 * the current maximum color and subtract the color of
 * the pixel.
 */
 private void swap() {
 ImageObject imgobj = imagepanel.getImageObject();
 if ((imgobj == null) || !imgobj.isDataValid()) {
 return;
 }

 // create a copy that we work with
 ImageObject clone = null;
 try {
 clone = (ImageObject) imgobj.clone();
 } catch (CloneNotSupportedException exc) {
 logger.warn("Could not clone image.", exc);
 return;
 }
 double max = clone.getMax();

 // change all pixels, see Appendix B for more
 // efficient methods
 for (int i = 0; i < clone.getSize(); i++) {
 clone.setDouble(i, max - clone.getDouble(i));
 }

 // set the preview pane
 ipPreview.setImageObject(clone);
 }

 // --
 // IM2LEARNMenu implementation
 // --
 /**
 * Store the reference to the imagepanel for later use.
 * The imagepanel passed in as argument is the
 * imagepanel to which this tools is associated.
 */
 public void setImagePanel(ImagePanel imagepanel) {
 this.imagepanel = imagepanel;
 }

 /**
 * For this tool there is no operation that works on the
 * imagepanel directly and thus we return null
 * indicating that no menu entries need to be created on
 * the panel.
 */
 public JMenuItem[] getPanelMenuItems() {
 return null;
 }

 /**
 * Create a menu entry called Tools, and attach a
 * submenu entry to this for this class, called swap. If
 * the user selects this class

Example Plugin

 */
 public JMenuItem[] getMainMenuItems() {
 JMenu menu = new JMenu("Tools");

 JMenuItem item = new JMenuItem(new AbstractAction("Swap") {
 public void actionPerformed(ActionEvent e) {
 if (!isVisible()) {
 Window win = SwingUtilities.
 getWindowAncestor(imagepanel);
 setLocationRelativeTo(win);
 setVisible(true);
 }
 toFront();
 }
 });
 menu.add(item);

 return new JMenuItem[] { menu };
 }

 /**
 * When a new image is loaded make sure that the current
 * swapped image is removed, i.e. perform a reset. Only
 * need to reset the image if this frame is visible.
 */
 public void imageUpdated(ImageUpdateEvent event) {
 if (!isVisible()) {
 return;
 }
 if (event.getId() == ImageUpdateEvent.NEW_IMAGE) {
 reset();
 }
 }

 // --
 // HelpEntry implementation
 // --
 /**
 * Create a node for the help system called Tools, and a
 * leafnode called Swap. The leafnode will contain the
 * documentation about this function.
 */
 public HelpTopic[] getTopics() {
 HelpTopic topic = new HelpTopic("Tools");
 new HelpTopic("Swap", topic);
 return new HelpTopic[] { topic };
 }

 /**
 * Return the right documentation depending on what node
 * is selected, in this case only the Swap node should
 * exist.
 */
 public URL getHelp(String menu) {
 if (menu.equals("Swap")) {
 return getClass().getResource("help/swap.html");
 } else {

Example Plugin

 return null;
 }
 }
}

Speed Improvements

Appendix B Speed Improvements

The generic method of accessing the data is slowest (about 4 times). You can speed things up
by adding a simple switch statement to typecast the generic object to the correct type object.
Having separate loops for each type will speed this even more up. The fastest implementation
is to typecast the result to the correct type using getData() and then access the array directly.
However, this leads to a large number of code lines and is the most error-prone, while generic
methods are the least code and less error-prone. An optimal approach to coding is to use the
generics while developing code, and switch to specifics when optimizing the code.

Following is a sequence of code excerpts where the ImageObject is modified. The examples
will go from simply using the generic getter and setter methods of the ImageObject where the
developer does not need to know about specific types of ImageObject, to the very specific
version where the underlying datastructure is modified. The advantage of the generic get and
set methods is that if a new imagetype is introduced the generic methods will still work, but
the optimized code will not work with the new imagetype.

In the first example we use the generic getter and setter methods. The developer does not need
to know about how the data is stored and what type the data is. By using the getDouble
method we guarantee ourselves that it will work with any datatype, since double can represent
the largest numbers. The code uses the abstract class ImageObject for the function calls. When
the code is executed the runtime system will find the class implementing the functions and call
those functions. Inside those functions might be a typecast to convert the data from the
underlying datastructure to the more generic double type.

ImageObject imageobject;

switch (imageobject.getType()) {
 case ImageObject.TYPE_BYTE:
 ImageObjectByte imgbyte = (ImageObjectByte)imageobject;
 byte valbyte;
 for(i=0; i<size; i++) {
 valbyte = imgbyte.getByte(i);
 imgbyte.setByte(i, valbyte + 1);
 }
 break;

 case ImageObject.TYPE_DOUBLE:
 ImageObjectDouble imgdouble = (ImageObjectDouble)imageobject;
 double valdouble;
 for(i=0; i<size; i++) {
 valdouble = imgdouble.getDouble(i);
 imgdouble.setDouble(i, valdouble + 1);
 }
 break;
 default:
 throw(new ImageException("Unknown imageformat.");
}

Speed Improvements

Finally we can ask the ImageObject for the underlying datastructure and modify it directly.
This is done by retrieving the array from the ImageObject using imageobject.getData().
This will return an array with the values of the image. The image is stored in row major order
with the bands interleaving the pixels (for example an image with 3 rows, 2 columns and 3
bands is stored as RGBRGBRGBRGBRGBRGB where the first triplet is the pixel at row 1,
column 1, the second triplet is the pixel at row 1, column 2 etc.). If the data is modified using
this array the class needs to be notified of this and the function
imageobject.getMinMaxInvalid() needs to be called. This will make the class recalculate
the minimum and maximum values of the image when either imageobject.getMin() or
imageobject.getMax() is called or the image is drawn in an imagepanel.

ImageObject imageobject;

switch (imageobject.getType()) {
 case ImageObject.TYPE_BYTE:
 byte[] bytearr = (byte[])imageobject.getData();
 for(i=0; i<size; i++) {
 bytearr[i] += 1;
 }
 break;

 case ImageObject.TYPE_DOUBLE:
 byte[] bytedouble = (double[])imageobject.getData();
 for(i=0; i<size; i++) {
 bytedouble[i] += 1;
 }
 break;
 default:
 throw(new ImageException("Unknown imageformat.");
}
imageobject.setMinMaxInvalid();

Software License

Appendix C Plugins

This appendix provides a user guide to all plugins that have been documented so far. There
are many more tools that we have not ad the time to document and are available only in the
on-line help.

The current document contains groups of tools labeled as Edit, Panel, Tools, Hyperspectral,
and Segment.

C.1 Edit

C.1.1 Copy
This will allow the copying of the image to the system clipboard. The image that will be
copied is the image that is currently visible and is depended on bands for red, green and blue;
gamma; crop etc..

C.1.2 Paste
This will allow the pasting of the image from the system clipboard. The resulting image will
be a 3 band image of type BYTE.

C.2 Panel

C.2.1 Class GammaDialog
If an image is over or under saturated some details might not be visible. Fortunatly often this
over/under saturation can be compensated by using gamma control. Gamma adjustment
allows you to brighten the whole image. The formula used is: newvalue =
oldvalue^(1/gamma). For gamma values larger than one this will result in a brighter image,
allowing you to see details in darker regions of the image. For gamma values less than one this
will result in a darker image, allowing you to see details in parts of the image that are
oversaturated.

Software License

The dialog allows a user to specify the gamma value by either entering it in the text field, or
adjusting the slider bar. To see the result, a user can press the preview button which will apply
the gamma correction and show a preview of the image. If the image is not satisfactory then a
user can modify the gamma value and check again using preview. If the result meets the
desired quality then by pressing the "Apply" button a user will apply the gamma correction to
the currently visible image.

C.2.2 Class ImagePCA
The class ImagePCA provides a tool for performing principal component analysis
(PCA) of images. This functionality is available from the main menu in IM2LEARN under
features, and will be applied immediately to the current image in the main IM2LEARN frame.
If the current image was obtained by forward PCA then it will be converted back to the
orifinal image without any loss of information.

Description: The forward PCA of an image is calculated by first creating a correlation matrix
of the image. This matrix will show how each band is related to each other band. The PCA
code will use the correlation to compute a new transformation based on eigenvectors. This
new foward transformation matrix will convert the original image into a PCA image. Each of
the bands in the new PCA image will contain information from all the bands of the original
image. The first band in the PCA image has the largest contribution from the original image
and each additional band in the PCA image has smaller contribution from the original image.

To recover the original image from the PCA image, coefficients of the transformation matrix
("eigenvectors") are stored in image properties, as well as, the type of the original image
("originaltype"). These image properties are used when reverse PCA is being executed.

An example of a PCA image transformation is shown below for the "Runner" image.

Software License

This class also provides utility functions to calculate a covariance of an image,
calcCovarianceMatrix, as well as, the correlation, calcCorrelationMatrix.

C.2.3 Select Band
This dialog allows you to select which bands in the image are represented by red, green, blue
and gray. The gray band is used if the image is shown as grayscale, otherwise the red, green
and blue bands are used to draw the image in color.

If the checkbox in front of red, green or blue is unchecked, the image will be drawn without
that particular band. For instance unchecking both the green and blue checkbox will show the
image with just the red band and makes it easy to see how much red there is in the image.
Unlike the gray scale image the image will now be drawn with just the red band.

Changing any of the options will modify the small preview image, giving you immediate
feedback on the changes you made to the image.

Software License

Figure: Select Band Dialog.

C.2.4 Sub-area selection
This option enables to select a sub-area of interest. An area is selected by left mouse clicking
and dragging to establish a rectangular window. With the right mouse button, choose
"Selection->Show Selection" to display the area of interest. You might use the zoom option to
increase the viewed resolution. The full image can be retrieved by choosing "Selection->Full
Image" (see Figure). The sub-area selections can be disabled by un-checking the box
"Selection->Allow Selection".

Figure : Sub-area selection menu.

C.2.5 Image Zoom
This option change digital resolution of an image. The option "fit" will automatically rescale
an image to fit the image panel size. The option "custom" lets a user define the scaling factor
either as a multiplicative factor or as a percentage (by appending % to the number) of the
original image size. For example using the number 2, or 200% will result in an image that is
twice the size of the original.

Software License

Figure: Zoomselectionmenu.

C.3 Tools

C.3.1 Bound Box
The class BoundBoxDialog provides a graphical user interface (GUI) to the class BoundBox
designed for drawing rectangles around areas in an image. The Dialog provides parameters
which restrict the showing of undesired Bounding Boxes. For instance noise due to bad
quality of images. The parameters are set to a minimum of 5 pixels by 5 pixels and a
maximum which should be high enough not to be exceeded by most images (it's the maximum
Integer value). The Area is displayed on the right of the width and height parameters and is
merely intented as a help for the user. Therefore and especially small or large Bounding Boxes
can be filtered out.

Example:

This tool is used to find the text areas inside of a non-PDF file. There is still some noise which
might be removed with the use of other tools. But most texts are picked up nicely, unless the
font is too small.

C.3.2 Image Calculator
The class ImCalculator provides a tool for performing algebraic and boolean operations with
images. The algebraic operations are image addition, subtraction, inversion, multiplication,
division and average. The boolean operations include AND, OR and XOR.

Software License

Description: The methods supported by ImageCalculator class operate on images at the level
of each image pixel. For example, two color images with red, green and blue bands will be
added by summing spatially corresponding pixel values in each band. While the number of
bands and data type must be consistent in both input images, the image size can vary. The
result image will have the spatial dimension based on the minimum of input image
dimensions. If the result of any algebraic operation leads to a value that is outside the bounds
of the input data type, then all resulting values are scaled so that the output image contains
data of the same data type as the input images, unless they are not of the same type. In this
case it will create the output of the type of the image that is bigger, with double being the
biggest and byte being the smallest.

The ImageCalculator performs the following algebraic and boolean operations: Addition,
Subtraction, Inversion, Multiplication, Division, Average, Boolean AND, Boolean OR,
Boolean XOR

Setup: In order to execute any operation, images have to be loaded using the Load button.
Visualization of the loaded image is achieved by double clicking on the image name in the top
area.

Run: An operation to be performed should be chosen from the dropdown menu (Add,
Subtract, etc). By pressing the "Execute" button the calculation will take place and the result
will be shown in a new frame. The resulting image can be put into the mainframe by utilizing
"ResultIntoFrame"

The summary of the additional buttons is provided next:

Load Image - Loads an image.

Execute - The chosen action from the ComboBox will be performed with the images.

Software License

Save Result - saves the result image.

Example ADD:

C.3.3 Image Compare
Even though to the human eye two images look the same there can be some minute
differences, this dialog will allow the user to select a comparison method to compare two
images and visualize the minute differences between the images. The tool will allow the user
to load a test image, a mask (or use a predefined mask) and test method, as well as a multiplier
for the result image and the type of the result image.

Figure: Image Compare Dialog.

Software License

The dialog shows all these options. To perform a comparison the user must first select an
image to compare the current image in the mainfram against using the "Load Test" button.
This will show a dialog allowing the user to load an image. To make sure the right image is
loaded the user can show the test image using the "Show Test" button.

Next the user has to decide which mask to use. The user can use one of the predefined masks
or load a custom mask. The predefined mask will create a mask image that splits the original
image in squares of the selected size, from 1x1 (pixel) to 100x100 size squares. If the user
selected "Load Mask" a dialog will appear allowing the user to load an image to be used as a
mask. Only the first band of this mask image wil be used! The user can check the mask by
clicking on the "Show Mask" button. Some masks however don't work well with certain
comparison methods (for instance pixel (or 1x1) does not work with histogram test.

Next the user has to select which test to use. The user can choose one of the following test:

Subtract

For each region and band, as defined by the mask, this routine will calculate the average for
both the original and the test and subtract them from each other. The result image will contain
the difference in that region. Setting the mask to 1x1 will result in the difference per pixel for
the image and test image.

Correlation

This will calculate the Pearson linnear correlation for each band and mask value. Currently
only the pearon value is calculated correctly. If the mask is set to pixel ((1x1) it will compute
the correlation per band over the whole image. There is no resulting image.

Histogram

For each band and region in the mask image, we create a histogram of all values. After
normalization we calculate the percentage of pixels that are placed in one bin, but should be in
another. The resulting image will have this percentage.

Chi Square RGB and Chi Square HSV

This will compute the CHI-Square value on a per band and mask region. The resulting CHI-
Square value will be returned in the result image. We have observed that for images with
small changes (i.e. a red scratch in the image) the CHI-Square value will be large enough to
result in a probability of 0.

Tuple

This will create a subimage by taking the 3 highest bits of the first, second and the 2 highest
bits of the third band and combine them into a 8 bit byte. Next it performs a CHI-Square test
for each mask region and band on this subimage and the subimage created from the testimage
in simmilar way. The result image will contain the CHI-Square value for each mask region.

Software License

Long Chi Square RGB

This is the same as Tuple except that instead of only using a few bits we concatenate the first,
second and third byte of both images and perform a CHI-Square test on each of these new
images. The resulting CHI-Square value will be put in the resulting image.

Finally the user can use the Multiplier and Image Output fields to select what imagetype the
resulting image will be and what multiplier needs to be used when comparing the images. For
instance to create an BYTE image of the Histogram we need a multiplier of 255 since the
original range of values will be between 0 and 1.

The user can save the result of the comparison as an image using the "Save Image" button.

C.3.4 Treshold
The class Threshold is a tool for two-class clustering problems using Euclidean distance, a
hypercube or a hyper plane for separating clusters in high-dimensional space.

Description: The class operates in three distinct modes that are set in the ThreshType choice
list. In these three modes, points in high-dimensional space are classified based on (1) their
Euclidean distance from the origin (a scalar value), (2) a hypercube (a vector) or (3) a hyper
plane (two vectors).

Setup: In the "Distance (scalar)" mode, the scalar value is set either in the edit box or by
moving the slider below the edit box denoted as Value(Point). The value is also shown in the
text area together with the outcome of the thresholding operation. The outcome of the
thresholding operation is the number of points below the threshold denoted as "BlackCount"
and above the threshold denoted as "WhiteCount".

Software License

In the "Box (vector)" mode, it is possible to set the upper corner of a hypercube by selecting
one of the point dimensions in the choice list labeled as "ThreshPoint". The coordinate can
then be modified either in the edit box or by moving the slider. The upper corner of a box
(hypercube) is defined as the point that encloses the maxima of all points denoted as "Black".
The lower corner is always set to the minimum coordinate in each dimension.

The last option "Plane (2 vectors)" of the "ThreshType" choice list defines a hyper plane by
setting one point in the plane (ValuePoint) and one point as the tip of the normal to the plane
(ThreshVecNormal). The settings can be modified either in the edit boxes or by moving the
sliders.

Run: The text area reports input parameters (a scalar, one vector or two vectors) and output
parameters (BlackCount and WhiteCount). It is possible to view the thresholded images by
clicking "Show" and save them by clicking "Save". Any changes in the input parameters will
be automatically updated in the frame showing the thresholded images. Although the default
values for each mode correspond to statistical thresholds (e.g., the sample mean of the image),
further input parameter tuning is facilitated by on-line visualization of the thresholded image
with the "Show" button.

Software License

Release notes: Java sliders support only integer data type therefore any double precision
thresholds must be entered via edit boxes. The value that is shown in the edit boxes will be the
actual value used for thresholding.

C.3.5 HSV Treshold
The class HSVThreshold is a tool for clustering problems in HSV (Hue, Saturation, and
Value) color space for color-based pixel separation. The main purpose of this tool is to support
semi-automated color-based segmentation. Particularly, this tool provides users the decision
support about valid pixel value ranges for specific types of object detection.

Description: The class operates in three ranges of HSV values. Points within the user-
specified value ranges are appeared in the result image, both as RGB and HSV images. In
each scrollbar, a user can adjust the upper and lower limits of the pixel values, and can fix the
dynamic value range by checking the “Fix Range” option. For example, the lower/upper limit

Software License

will move automatically while keeping the same dynamic value range when changing the
upper/lower limit.

Setup: By default, both RGB and HSV image are displayed from the main Im2Learn frame.
The two windows dynamically show the classified images when a user adjusts the threshold
value ranges.

For large image processing, such as “svs” format, a user can directly load the image into the
HSV threshold tool independently from the main Im2Learn frame by pressing “Load” button.
If a sub-sampled overview image is available, as a same filename with “tif” extension, an
overview window will be displayed where a user can interactively select the currently
displayed region (marked as red cross).

Software License

Run: First, select a sub-region from the overview image to load a 200 by 200 pixel
neighborhood from the large image to the RGB and HSV windows. Next, change the Hue,
Saturation, and Value range to acquire the thresholded image. The number of valid (displayed)
pixels is shown in the title of the tool as “Positive pixel count” with the percentage with
respect to the total number of the pixels in the sub-region.

“Change Region” button can be used to load an overview image with different filename. Note
that the overview image has to be a 1:200 sub-sampled image from the original svs image, for
example, an image sub-sampled by the factor of 200.

C.4 Hyperspectral

C.4.1 Convert RGB
The class HuperSpectralToRGB provides a tool for display and data conversion of
hyperspectral images to red-green-blue (RGB) image.

Description: Hyperspectral images contain too many bands to display at the same time as
regular monocromatic or color images. For instance, to be able to display a hyperspectral
image covering visible spectral range, a user will often have to select three bands that
correspond approximately to the red, green and blue wavelengths. Fortunately the wavelength
information associated with each hyperspectral image band is known and a user could select
the bands of choice for display.

This tool is designed to automatically convert a hyperspectral image to a RGB image by
collapsing each of the hyperspectral bands to the RGB bands. This is done by using the
algorithm developed by Dan Bruton (http://www.physics.sfasu.edu/astro/color.html). The
algorithm takes the wavelength, determines the percentage it contributes to the Red, Green
and Blue color, and multiplies it with the intensity to create the RGB image. In the case of

Software License

non-visible light (lower than 380 and more that 780nm) the percentage it adds to the RGB
values is 0.

This dialog allows users either to choose the existing wavelenths that describe the
hyperspectral image (if available) or to specify the wavelengths of the first and last bands and
interpolating the wavelength for all the bands in between first and last bands. The dialog will
enable both radio buttons "Use existing wavelengths" and "Specify wavelength range" if the
loaded hyperspectral image contains information about band wavelengths. Otherwise the
option of "Use existing wavelengths" is disabled. To see the selected spectrum range specified
by fisrt and last band wavelengths, users can press the "Show Spectrum" button and view the
spectrum range visualization (see below).

Once a user is satisfied with the spectrum range, pressing the "Apply" button will convert the
current hyperspectral image to a RGB image.

C.5 Segment

C.5.1 Segment 2D Super
The class Seg2DSuperDialog provides a graphics user interface (GUI) to the class
Seg2DSuper designed for region growing segmentation tasks given a set of initial spatial
locations. The purpose of this tool is to create masks in a supervised way for scene modeling
purposes.

While any unsupervised segmentation algorithm has to estimate the optimal number (or
numbers) of image segments, their spatial locations and intensity profile characteristics, this
tool allows a user (1) to specify initial spatial locations (seeds) of desired image segments
(regions) by a mouse click in the original or mask image, (2) to select minimum similarity of
interior pixels forming a contiguous segment, (3) to remove holes from segments that are
introduced due to speckle noise or other sharp intensity discontinuities, (4) to assign higher
level labels to each formed segment (e.g., grass or sand), and (5) to merge segments that are
heterogeneous in terms of intensity profile but belong to the same segment conceptually. Next,
we describe how to form a mask and take an advantage of the aforementioned capabilities
using this tool.

The dialog of the supervised segmentation tool is shown below.

Software License

Setup and Run: After launching the dialog, a user will see a new frame displaying the current
mask with only one label. By clicking anywhere in the original image and pressing the button
"Segment From Original", the region growing algorithm will form a contiguous region
(segment) that contains pixels with intensity values less different from the mouse selected one
than the value of a threshold. The threshold value can be modified by moving a slider bar
denoted as Delta or by entering a new value in the edit box denoted as Value in the Threshold
area of the dialog. The distance between any two pixels is computed using a Euclidean
distance measure.

Let us assume that we try to segment the image of a runner shown below.

Software License

If the obtained segment is satisfactory then it can be added to the final segmentation by
clicking on the "Add Change to Final" button. The radio buttons "Intermediate Mask" and
"Final Mask" allow switching the mask visualization between the intermediate and final
segmentation results.

It is possible (and sometimes desirable) to select the region growing origin in the mask image.
One would mouse click in the mask image at a selected pixel seed location and then press the
button "Segment From Mask" to obtain an intermediate segmentation results starting from the
given location. An example of intermediate segmentation is shown below.

A user might want to annotate each segment with its abstract meaning since the abstract
meaning is usually very hard to obtain directly from image segment characteristics. This is
enabled by typing a name in the "Name" edit box for the associated segment described by a

Software License

value in the "Value" edit box of the "Label" dialog area. With the drop down menu inside of
the "Label" dialog area, one can select already used labels and modified their names. In the
"Auto Increment" mode, the values will increase by one and the assigned labels will be set to
"unlabeled". Segment names and their pixel counts are reported in the text area as it is shown
in the dialog snapshot above.

In the presence of speckle noise, the obtained segments might have undesirable holes since the
noise pixels are outside of the allowed range of values and increasing the threshold value
would lead to merging multiple segments of different abstract meanings. The "Noise" part of
the dialog allows performing noise removal (or removal of segment holes). The "Size
Threshold" value denotes the maximum size of a hole that would be considered for removal.
The "Half Window" value denotes a half size of a spatial kernel (neighborhood of pixels) that
is used for filling the exiting holes of size less than the "Size Threshold" value. This is critical
when holes occur at the border of two labeled segments. The "Iteration" slider bar is for
choosing the number of iterations that the noise removal step should be applied. Two
examples below show a segment with holes and without holes after noise removal.

It is often the case that a desired segment contains heterogeneous intensities and cannot be
created by choosing a single threshold and a pixel seed, for example the hands of a runner in
the sample image presented above (see obtained labels below).

In this case, merging of multiple segments can be achieved by selecting a label in the "Label"
dialog area, choosing a pixel seed location and adding the obtained regions into one segment.
Although this procedure can lead to segments that are not spatially contiguous, the formation
of such segments is supported because of higher level abstract labels might need such
representation.

Software License

If the original image contains more than one band then the Euclidean distance threshold for
region growing can be replaced by a vector of values containing one threshold per band. This
choice of a threshold vector as opposed to a threshold value can be achieved by switching the
drop down menu from "Sphere (Radius)" to "Box (Dimension)" in the Threshold area of the
dialog. The slider bar "Use Bands" is enabled in the "Box (Dimension)" mode and different
threshold values can be set for each band. This option could be used, for instance, if it is
desired to obtain a segment from a RGB image that contains red color pixels (red band
threshold is set to 0) with a range of green and blue shades (green and blue band thresholds are
set to 50).

Finally, the resulting mask image can be saved using the "Save" button. If the output file
format is HDF (.h5 suffix) then the label names will be stored as well, otherwise the
information will be lost. A mask from previous sessions can be reloaded by clicking the
"Load" button for further modifications. If the results during a current session are not
satisfactory then the button "Reset" will reset the mask for a new segmentation attempt.
Pressing the button "Done" will close the dialog.

Software License

Appendix D Software License

The software is owned by the University of Illinois at Urbana-Champaign.

