
Introduction

Cyber-
Integrator
Manual

Cyber-Integrator (CI) was created at the National Center for Supercomputing
Applications, University of Illinois at Urbana-Champaign. We would like to
acknowledge multiple funding agencies for the support including NCSA, NSF, NASA
and NARA. The main creators of Cyber-Integrator are Rob Kooper, Luigi Marini and
Peter Bajcsy with support from Barbara Minsker, Jim Myers, and Tim Nee. This
document represents a current description of our on-going research and development of
Cyber-Integrator and hence is updated on a regular basis.

Introduction

Version 1.0

Revision History
Revision Date Author Notes
0.1 4/04/2006 PB,

RK,LM
Initial version of the document

1.0 2/8/2007 PB, TN Initial release of the software

Table of Contents
Cyber-Integrator Manual .. 1

Chapter 1 Introduction .. 4
1.1 Purpose of Cyber-Integrator .. 4
1.2 Why Meta-Workflow? ... 4
1.3 Cyber-Integrator Functionality .. 5
1.4 Functionality of the Released Stand-Alone Version.. 5
1.5 Cyber-Integrator Architecture.. 5

Chapter 2 Installation Instructions ... 8
2.1 Hardware requirements.. 8
2.2 Software requirements ... 8
2.3 Installation steps... 8

2.3.1 Windows .. 8
2.3.2 Unix-based systems ... 8

Chapter 3 How to use Cyber-Integrator..................................... 9
3.1 Main window ... 9
3.2 Browsers .. 10
3.3 Menu Bar ... 12

3.3.1 File Menu... 12
3.3.2 Tools Menu .. 13
3.3.3 Help Menu ... 13

Chapter 4 Application Examples .. 14
4.1 Feature Extraction: Slope Calculation from Elevation Maps 14

4.1.1 Execution Sequence ... 14
4.1.2 Extended Execution Sequence... 16

4.2 Water Quality Simulation: Simulation of Bacterial Total Maximum Daily Loads
(TMDL) for Corpus Christi Bay (CCBay)... 18

4.2.1 Execution Sequence ... 18
4.3 Rerunning, Modifying and Extending Application Examples................................. 23

4.3.1 Illustration Example... 23

Introduction

Chapter 5 Advanced Operations: Adding Tools to Cyber-
Integrator .. 27

5.1 Registry Location and General Principles ... 27
5.2 Tool Descriptors... 28

5.2.1 Tool Tag... 28
5.2.2 Input and Output Data Tags... 29
5.2.3 Help Tag... 29
5.2.4 Executor Tag.. 29

5.3 Executor Specific Tags .. 30
5.3.1 Java Executor Tags .. 30
5.3.2 External Executor Tags.. 31
5.3.3 Excel Executor Tags .. 31
5.3.4 CopanoBay Executor Tags .. 32

5.4 Illustration Example... 33

Chapter 6 Advanced Operations: Adding Executors to Cyber-
Integrator .. 35

6.1 General Principles.. 35
6.2 Motivation Example... 36
6.3 Illustration Example... 36

Appendix A Excluded Remote Functionality 40

Appendix B Optional Application Example............................. 43
Execution Sequence .. 43

Appendix C Software License.. 44
6.3.1 Illinois Open Source License ... 44

Introduction

Chapter 1 Introduction
1.1 Purpose of Cyber-Integrator
The motivation for developing Cyber-Integrator is to design a highly interactive scientific
process management (workflow) system that aims at building complex problem-solving
environments from heterogeneous tools. Driven by systems-science use cases and complex
informatics problems, we identify the dimensions along which current process management
technologies must grow to become a robust cyber-infrastructure capable of scaling to meet the
national needs. There is an obvious need to be able to join workflows developed using
modules from the multiple open source and commercial workflow systems in use in various
sub-disciplines. Less obvious but also critically important are abilities to describe and share
workflow fragments, to execute portions of workflows on different appropriate hosts, or to
provide security, provenance and fault-tolerance features of software execution.

1.2 Why Meta-Workflow?
There are multiple definitions of workflow as described in our white paper1. One of the
simplest definitions of a workflow is presented below:

A Workflow is a collection of Steps and data that define the paths that can be taken to complete a task.
Workflows may contain activities such as displaying content to users, collecting information from users
or computer systems, performing calculations, and sending messages to external computer systems2.

In our current Cyber-Integrator prototype, we use the word meta for the following reason. Our
aim is to design a workflow that works with descriptions (meta-data) of data, software tools
and computational resources for easy integration and hierarchical organization. Thus, we focus
on integration of heterogeneous software by a domain scientist (a computer programming
novice) that would be achieved by adding an xml description of his/her tool rather than by a
low level programming exercise. One can create distributed meta-data(a “registry”) about
data/tools/resources with a text or xml editor. The meta-workflow system will pull in all
registry information and execute the workflow accordingly. The benefits of such meta-
workflow for domain scientists are (a) the simplicity of software integration within the meta-
workflow system and (b) the extra benefits of running, reusing, re-purposing and sharing
workflows while receiving feedback from the system during workflow creation.

Thus, we labeled Cyber-Integrator as a meta-workflow system to refer to a workflow design
that provides meta-data descriptions of data, software tools and computational resources for

1 Bajcsy P., R. Kooper, L. Marini, B. Minsker and J. Myers, "A Meta-Workflow Cyber-infrastructure
System Designed for Environmental Observatories," Technical Report: NCSA Cyber-environments
Division, ISDA01-2005, December 30, 2005.
(available from http://isda.ncsa.uiuc.edu/peter/publications/techreports/2005/meta-workflow-
approaches.pdf)

2 www.scbos.com/Info/SCBOS-Site-Glossary.htm

Introduction

easy integration and hierarchical organization, and meets the end-to-end needs outlined in
Section 1.1.

1.3 Cyber-Integrator Functionality
The current implementation of Cyber-Integrator enables users (1) to browse registries of data,
software tools and computational resources, (2) to create meta-workflows by example (step by
step execution), (3) to re-use and re-purpose meta-workflows, (4) to execute meta-workflows
locally or remotely, (5) to incorporate heterogeneous code executors and tools, and link them
transparently, (6) to provide recommendations about workflow completion, (7) to search for
data, tools and resources in registries, and (8) to support processing of streaming data and
large size, out-of-core, data.

In this document, executors are understood as workflow environments (e.g., D2K or Kepler)
or stand-alone application suites (e.g., Matlab, MS Excel or ArcGIS) while tools are specific
solutions (functions) running using these executors. Computational resources refer to those
machines that have installations of the Cyber-Integrator executors.

The current support of heterogeneous engines includes a Java executor, an external executor,
MS Excel, a Monte Carlo simulation (Copano Bay demo), and GeoLearn. Java includes a set
of Im2Learn tools. Both Java and external are generic executors that can run Java-based
codes and the command-line based codes, respectively. The tools that use these executors are
primarily for remote sensing analyses and water quality analyses (see Chapter 4 for
Application Examples).

1.4 Functionality of the Released Stand-Alone Version
This release of Cyber-Integrator is intended as a desktop solution. As a result, remote
functionality has been excluded from this release. This manual may mention these
abilities. They have been developed in other extended versions of Cyber-Integrator, but
this release only handles local functionality. The application does not at any point
contact remote resources. The extended versions of Cyber-Integrator use the remote
resources (a) for executing and monitoring processes on a remote server, (b) for storing
and retrieving workflows and provenance information from a remote server, (c) for
analyzing streaming data coming from remote locations, or (d) connecting to any remote
services, i.e., recommendation services like CI-KNOW. See Appendix A for more
information about remote functionality in extended versions of Cyber-Integrator.

1.5 Cyber-Integrator Architecture
We view Cyber-Integrator as a process management system, where a scientist would like to
select a triplet with input data, tool and computational resource for each processing step within
a sequence. One step of a workflow (understood as a sequence of steps) is shown in Figure
1-1.

Introduction

Figure 1-1: A typical sequence to execute one step of a scientific analysis. The output of the
processing step either goes to the data repository or becomes an input to a new processing step.

From the process management perspective, a meta-workflow could be viewed as a system for
(a) browsing and searching available data, tools and computational resources, (b) accessing
available data sets, tools and computational resources, (c) bringing them together; (d)
executing one tool at the time or a sequence of tools, (e) monitoring and controlling executions
and (f) efficiently utilizing available data, tools and computational resources. These features
are mapped into the design of Cyber-Integrator architecture.

The overall architecture of Cyber-Integrator is illustrated in Figure 1-2. The key components
are the meta-workflow (MWF) editor: engine, executors, applications, collections of registries,
and optional meta-data repository and event broker. They are all written in Java. The editor
serves as a user interface to the gamut of Cyber-Integrator functionalities. The engine code
coordinates the execution by multiple executors (remote or local). Each executor is a specific
code to interact with applications and each application is the actual installation of the piece of
code that has to be executed. The registries could be viewed as repositories of high-level
descriptions of available data, tools and resources. The meta-workflow store provides a
repository for gathered information about meta-workflow execution and it is based on a
resource description framework (RDF) format. Finally, the event broker is a component for

Introduction

handling a stream of data or events, and it is based on Java Message Service (JMS) application
programming interface (API) for sending messages between two or more clients

The arrows describe the communication among the key components of the meta-workflow
system. For example, on the right side of the chart, the editor uses the data, tool and resource
registries to create a triplet. The triplet forms a step in the meta-workflow. This step is passed
from the editor to the MWF engine. The MWF engine then executes this step using an
appropriate executor communicating with each application. The output of this step is sent by
the MWF engine to the data registry.

As the MWF engine is executing a step, provenance information is generated, i.e., step 1
started execution at time X. The provenance information is sent to the meta-data store (see the
left side of the chart). Provenance information gathering by the MWF engine could also be
viewed as a sequence of events. These events could trigger other actions. For instance, an
event “step is finished executing” reported by the MWF engine could trigger the execution of
another step, i.e., “show image” step is being triggered after finishing “load image” step.
Events are not only generated by the engine but also by the editor and hence the link between
the editor and the event broker. For example, event broker could wait for an event “a new step
has been added to the meta-workflow” sent by the editor and notify the MWF engine about it.

Finally, the link between the meta-data store and the editor refers to the system feedback
during workflow creation. The editor can leverage provenance information, for example, by
making recommendations based on past executions. The recommendation feature uses
provenance information to recommend what tool to use next in a workflow sequence.

Figure 1-2. The overall architecture of Cyber-Integrator
.

Introduction

Chapter 2 Installation Instructions
2.1 Hardware requirements
A computer with at least 512MB of RAM is recommended. Some processing steps might
require significant computational resources. However, for most purposes, a regular desktop
computer should be able to handle the processing. The execution duration depends on the
hardware specification and the algorithmic computational needs.

2.2 Software requirements
• An Operating System capable of running Java
• Java 1.5

2.3 Installation steps

2.3.1 Windows
Extract cyberintegrator.zip with your tool of choice (e.g. winrar or winzip). To run the
application, double click on cyberintegrator.bat.

Note: cyberintegrator.bat is simply a text file with several command line parameters. If
you would ever experience out of memory issues (visible through the command line
window or Help->Logging), then you might change the -Xmx512M parameter to
something higher (e.g. -Xmx1024M) with Notepad.

2.3.2 Unix-based systems

The installation of Cyber-Integrator on a unix-based system is very similar to the
Windows installation. From the command line, you can extract Cyber-Integrator with the
command “unzip cyberintegrator.zip” and you may run it with the command
“./cyberintegrator.sh”. sh files can be edited in the same manner as .bat files, with a text
editor.

Introduction

Chapter 3 How to use Cyber-Integrator
3.1 Main window

Figure 3-1: Cyber-Integrator editor.

The Cyber-Integrator user interface is shown in Figure 3-1. The current meta-workflow editor
includes (1) three browsers of information registries (data - left, tools – middle, and executors
- right) and (2) presentation of system information (bottom). At the top of the window there
are buttons for a) executing the selected tool and b) recommending the next tool to be used in
the workflow.

The Data browser lists all data sets loaded or generated so far for processing. The Tools
browser lists the tools currently loaded from local and remote registries. The Resources
browser lists computational resources (executors) available for a particular tool.

The bottom pane in Figure 3-1 contains several tabs with information about the Cyber-
Integrator execution. The Help tab contains help text about the tool currently selected. The
Steps tab contains a list of the tools run so far with information about each execution. The
Graph tab includes a graphical representation of the sequence of steps. The current meta-
workflow can also be saved and either reloaded or shared with others later.

Introduction

Cyber-Integrator consists of a core set of functions and data structure conversions that
represent solutions for specific tasks.

In order to fully understand how to use Cyber-Integrator, you should read through the entire
user guide, particularly Chapter 4 Application Examples. However, the usage of Cyber-
Integrator can be summed up in two points: 1) clicking on an item in a browser will update the
other browsers to display the only valid choices to produce a triple. For example, clicking on
a tool will update the Data and Resources browsers to show (in black text) what data and what
executor will work with that tool. The unavailable data and resources will be grayed out. 2)
The green “execute” button will be grayed out until the Data, Tool, and Executor is a valid
triple. To see this visually, look at the figure below.

Figure 3-2 Valid triple ready to execute

3.2 Browsers
All browsers have search boxes at the bottom to allow for quick searching of the lists.
They also have a common UI for changing the display of their columns.

Introduction

Figure 3-3: Column Options

Columns can be added or removed by clicking on them. Horizontal Scroll allows the
columns to be wider than the browser box, and the Pack options resize the columns to be
the appropriate width.

Data The data browser displays the name of the data and the status of the Execution. The
name is defined in the tool registry. The status describes the state of the tool execution.
DONE means that execution was successful, while Failed indicates that it was not. Items in
this list can be right clicked on to display specific information about them. If you wish to
select multiple pieces of data for a tool, you may use shift or control-click to do so. Also,
perhaps more importantly, you can deselect selected data by control-clicking on it.

Figure 3-4 Data Information

Tools This browser displays the tool names and also dictates the contents of the Help box.
The possible executors for a tool can be displayed by choosing Executors in the column
options for that browser. Note: Not all possible executors may be installed (check the
resources browser).

Introduction

Resources This browser displays the executor name and its host. “Built-in” indicates that
the executor is located on the local host.

Status This part of Cyber-Integrator displays Help, Steps, and a Graph section.

3.3 Menu Bar

3.3.1 File Menu

Figure 3-5: File Menu

Click on New to start a new blank meta-workflow.
Note: New will not give you the option to save the current meta-workflow. Please take
care to save your Run or MWF (see below) if you do not wish to lose your work!
Open will produce a dialog to open .mwf files.
Save Run will save both the data and the meta-workflow (see Section 4.3).
Save MWF will save only the meta-workflow steps (see Section 4.3).
Preferences will bring up a preferences dialog. The default user interface colors can be
changed in the resultant window (see Figure 3-6).
Exit will quit the application. Again, make sure to save your work before doing this
since Cyber-Integrator will not give you the choice after quitting.

Figure 3-6: Preferences Dialog

Introduction

3.3.2 Tools Menu

Figure 3-7: Tools Menu
Execute has the same functionality as the green arrow. It will run the tool if the Data,
Tools, and Resources are a valid triple.
Clear Registry will clear the available tools and resources.
Load Registry allows you to load new tools and resources through an xml file called a
registry. See Chapter 5 for more information about registries.

3.3.3 Help Menu

Figure 3-8: Help Menu
Recommender->what tool to use? has the same functionality as the question mark
button. It will recommend the next tool to be used based on statistics gathered (metadata)
from local Cyber-Integrator usage.
About gives credit to the creators of Cyber-Integrator as well as copyright information.

Introduction

Chapter 4 Application Examples

Applications areas in which meta-workflows could be used are many. Some applications
include environmental engineering, bioinformatics, hydrology, precision farming, plant
biology, medicine or security. We present a couple of examples to illustrate workflow
sequences for (1) feature extraction (slope calculation from elevation maps) and (2) water
quality simulation (total maximum daily load simulations).

4.1 Feature Extraction: Slope Calculation from Elevation
Maps

The goal is to construct a workflow for loading elevation maps, calculating slope from
the elevation maps and display the original elevation map and the derived slope image.
This type of calculation is very common in many GIS applications. It is included here as
one of the simplest workflow sequences in order to familiarize the user with the Cyber-
Integrator user interface.

4.1.1 Execution Sequence
This application example is primarily using Im2Learn functionality that is executed using
the Java executor. The Im2Learn jar file is distributed with Cyber-Integrator and a java
run time environment is assumed to be present.

1. Start the Cyber-Integrator
2. A user selects the tool "Load Image" first. An example elevation map can be

found at data\test_data\DEMCD1AndCD2_ILsubSamp50.hdr
3. The loaded image can be visualized by selecting the input image in the left

browser and the "Show PseudoColor Image" tool in the middle browser. The
visualization is shown in Figure 4-1. The loaded image represents a digital
elevation map (DEM) of Illinois.

4. Next, a slope of the DEM image can be computed using the java executor as
shown in the right browser after selecting the input image (left browser) and the
tool "Calculate Slope" (middle browser). Visualization of the slope image is
shown in Figure 4-2.

5. The entire workflow process can be visualized by clicking on the bottom tab
"Graph". The graph of the workflow is shown in Figure 4-3.

Introduction

Figure 4-1: A DEM image loaded and visualized using "ShowPseudocolor" tool.

Figure 4-2: A slope image compute from the DEM image and visualized using "ShowPseudocolor"
tool.

Introduction

Figure 4-3: A DEM image loaded and visualized using "ShowPseudocolor" tool.

4.1.2 Extended Execution Sequence

During the workflow execution provenance, data are collected and stored in a local meta-
data repository. A conceptual organization of the workflow provenance information is
shown in Figure 4-4. The Cyber-Integrator can also save settings and outputs via the File
menu (see Section 3.3.1) so that meta-workflows can be reproduced at a later time.

Introduction

Figure 4-4: A conceptual organization of the workflow provenance information.

The provenance meta-data are analyzed by the recommendation tool. The system
provides real-time recommendations of tools and data sets that can be initialized from the
Cyber-Integrator by clicking the question mark button at the top of the window. For
example, before loading any data set, the recommendation is initialized and the pop-up
message shown in Figure 4-5 indicates the past uses of the tools for loading data.

Figure 4-5: A recommendation dialog based on the provenance meta-data information.

Introduction

4.2 Water Quality Simulation: Simulation of Bacterial
Total Maximum Daily Loads (TMDL) for Corpus
Christi Bay (CCBay)

This summary is adapted from Ernest To's description of his Monte Carlo simulation
using Carrie Gibson's bacterial loadings model3.

The Clean Water Act (CWA) requires that each State identify water bodies that do not
meet the State’s water quality standards. The study shown here focuses on Copano Bay,
located off the Gulf of Mexico in Texas. The Texas Commission on Environmental
Quality (TCEQ) has identified portions of the bay as impaired for contact recreation and
oyster water use due to high bacteria levels. The Texas oyster water use standards require
that the median fecal coliform concentration cannot exceed 14 cfu/100mL and that the
90th percentile value (i.e., the upper 10% of the samples) cannot exceed 43 cfu/100mL.
In order to meet these standards, Total Maximum Daily Loads (TMDLs) from the various
bacterial sources must be established, which are the maximum amount of pollution that a
water body can receive each day and still retain its uses.

Carrie Gibson and Dr. David Maidment of the University of Texas at Austin have
performed a significant amount of research for the Copano Bay TMDL and have
identified important bacterial sources in the Copano Bay watershed and their associated
loadings. Carrie developed a fecal coliform model in ARCGIS using Model Builder that
predicts annual average fecal coliform concentrations in the bay. Ernest To converted the
model to a macro in an Excel spreadsheet so that it could be run as a Monte Carlo
simulation to predict median and 90th percentile values for the TMDL. He also created
another spreadsheet that would download USGS data using a Web service and fit
distributions to the data, which are then used in the Monte Carlo simulation.

This demonstration shows how the Cyber-Integrator can enable researchers to easily link
a variety of tools and automatically pass data from one to another. Ernest's MS excel
spreadsheet macros are run and, at the click of a button, the results and an ESRI Shapefile
of the reservoir are fed into a visualization tool from Image2Learn (Java code) to create a
visualization of the likelihood of exceeding the water quality standards at each schema
node in the watershed. The nodes are locations in the watershed where bacteria levels are
measured; nodes are spatially linked in the model as shown in the visualization. Bacterial
loadings are predicted at each node, with the loadings originating from a variety of
sources (e.g., livestock, wastewater treatment plants, water birds, and leaking septic
systems) and being transformed via first-order bacterial decay kinetics.

4.2.1 Execution Sequence

3 See https://webspace.utexas.edu/tosc/www/index.mht

Introduction

This application example is primarily using MS Excel and Im2Learn functionality. It is
assumed that a user has a local installation of MS Excel prior to the MWF execution. The
Im2Learn jar file is distributed with Cyber-Integrator and a java run time environment4 is
assumed to be installed.

1. Start the Cyber-Integrator
2. Retrieve USGA Streamflow Data

o Execute the USGS WS Copano Bay Streamflows spreadsheet by
selecting it from the list and clicking on execute. A dialogue box will pop
up, asking the user to select a Gage Id (see Figure 4-6). Select any, click
OK. The output will be collected on the left pane under "CBay Streamflow
distribution parameters". This is an expensive operation and might take
quite a while to finish.

o This first step downloads daily streamflow data of a given USGS gage
from the internet and performs statistical analyses on it using an Excel
macro. It matches the flow distribution with a lognormal distribution and
outputs the distribution parameters.

3. Create Streamflow Distribution for full Schematic Network
o Select "CBay Streamflow distribution parameters" data and “Selected

Cbay Streamflow Gage ID” (using control or shift-click) created in the
previous step. Execute the Copano Bay Streamflow Distribution Setup
tool. This setup does not require parameters to be set. It will output
"Distribution Parameters" on the left pane.

o This step takes the distribution parameters from the previous step and
maps them to all of the nodes in the watershed for the Copano Bay
schematic processor network. Each gage affects multiple schema nodes in
the schematic processor model for Copano Bay. This step makes sure that
the right streamflow distribution parameters are available for each node
and creates a structure that can be used by the next tool (if run with an
input).

4. Execute the Copano Bay Fecal Coliform Concentration spreadsheet model
o Select the "Distribution Parameters" created in the previous step, and

execute the Copano Bay Fecal Coliform Concentration on it.
o Two dialogue boxes will pop up. One box is to specify a hydro node id in

the network for which to run the simulation (see Figure 4-7) and one is to
specify how many times the simulation will be run.

o Click on "steps" to see the steps so far and current progress. Note that you
can continue setting up later steps and the system will execute those steps
when ready.

5. Execute the Load Shapefile Im2Learn(Java) tool.
o Navigate to the data/CopanoBay directory and load the

CopanoBayWatersheds.shp file, which is an ESRI Shapefile.

4 According to http://www.objectinnovations.com/Guides/JavaVersions.html:
The Java Runtime Environment: this is the package of software that must be installed on a
machine in order to run Java applications

Introduction

6. Execute the Copano Bay Visualization tool, which uses Im2Learn.
o Select the shapefile that was loaded, the CBay Fecal Coliform

Concentrations, and the Node ID and Number of Iterations. Execute the
"Copano Bay Visualization" tool to get a view of the values collected from
the Monte Carlo simulation (see Figure 4-8). The visualization shows the
watersheds with the schematic processor bacterial loadings model for
Copano Bay that was used in the Monte Carlo simulation. The table with
the loadings shows values in red if they are above the threshold and in
blue if they are below.

7. Save your workflow when you finish.
o You or someone else can load the workflow later and see all the steps you

took, and continue from here. (Later versions of Cyber-Integrator will also
allow you to delete or add steps to existing workflows.)

o A unique feature of Cyber-Integrator, among other workflow tools, is its
ability to allow you to create your analyses by example in this stepwise
fashion, and replay them later. This could be set up in an automated
fashion to allow real-time updating of your analyses as new data are
received.

Introduction

Figure 4-6: User input is collected using a dialog for selecting gage identification.

Introduction

Figure 4-7: Dialogs for selecting schema node hydrological identification and the number of
iterations of the Monte Carlo simulation

Introduction

Figure 4-8: Visualization of the likelihood of exceeding the water quality standards at each schema
node in one of the Corpus Christi watersheds.

4.3 Rerunning, Modifying and Extending Application
Examples

Let us suppose that one would like to rerun an already created meta-workflow and
perhaps modify the parameters of multiple tools. This can be achieved by loading a .mwf
file with the sequence of steps only and deciding whether input parameters of steps
should or should not be modified before re-running the meta-workflow. It is also possible
execute one tool at the time to inspect the execution one by one.

In another scenario, one would like to continue extending an already existing meta-
workflow run that took several hours/days of computation. This could be achieved by
loading a .mwf file with the data. Be aware that while the .mwf file in this case was
generated from the File/SaveRun menu, the .mwf file described in the previous paragraph
was generated from the File/SaveMWF menu.

We describe next how to operate a loaded meta-workflow that would contain either a
sequence of steps only (meta-workflow only) or a sequence of steps with intermediate
data sets (meta-workflow run).

4.3.1 Illustration Example

Meta-workflow only: The release contains a saved metaworkflow file in
data/test_data/applicationExamplesMWF.mwf. The following sequence of steps can be
executed in order to demonstrate the capabilities.

Introduction

(1) Load the applicationExamplesMWF.mwf file via File/Open menu. The dialog shown
in Figure 4-9 will appear:

Figure 4-9: Dialog for choosing the meta-workflow to re-run or not.

(2a) If Yes is selected then the dialog with all meta-workflow parameters will appear as
shown in Figure 4-10. One can modify any parameter before re-running the meta-
workflow.

Figure 4-10: Dialog with meta-workflow parameters

(2b) If No is selected then the computation will not take place. A user would see a label
“NOTSTARTED” next to data sets in the data pane, and next to steps in the graph or step
view on the bottom of the Cyber-Integrator user interface (see Figure 4-11). The steps
can be now re-executed one by one by right clicking on the graph (see Figure 4-11
bottom left) or step name in the step view (see Figure 4-12 bottom), and selecting
edit/start or start. Figure 4-13 shows a case where some tools were re-executed, one is
running and others are NOTSTARTED.

Introduction

Figure 4-11: Loaded meta-workflow without re-execution.

Introduction

Figure 4-12: Re-execution of a tool “Calculate Slope” from the Step tab.

Figure 4-13: Loaded meta-workflow with two tools re-executed individually and one tool
still running.

(3) If an execution of step takes too much time then it could be interrupted by right
clicking on the step (graph or step view) and selecting the Interrupt option. In the current
release, it is not possible to remove a step from the meta-workflow sequence.

Introduction

Chapter 5 Advanced Operations: Adding Tools to
Cyber-Integrator

This section describes one of the advanced operations with Cyber-Integrator such as
adding new tools. In this section we assume that Cyber-Integrator already contains an
executor for the new tool that should be added.

In order to add a tool, one has to become familiar with the XML structure of tool
registries. It is also assumed that a user is familiar with the XML syntax and can also read
the XML schemas provided with the registry files.

We provide a short description of where to find the registry files, how to modify the
already existing tool settings and how to add a new tool by creating a tool description.

5.1 Registry Location and General Principles

The registries for all executors are currently located in the base Cyber-Integrator
folder\data\registry directory. For example, the following tool for viewing any text
using MS notepad can be found in the external.xml file in the data/registry folder.

 <tool name="notepad" uuid="external-2">
 <input name="Original Text" type="text" id="0"/>
 <output name="Modified Text" type="text" id="0"/>
 <executor>
 <external stderr="true">
 <executable>notepad</executable>
 <option>
 <data input="0" output="0"/>
 </option>
 </external>
 </executor>
 <help>MS Windows text editor for editing the text that is
passed in as input.</help>
 </tool>

The structure of the tool descriptions in registries is provided in the base Cyber-Integrator
folder\data\schema directory. For instance, the corresponding schema for the external
tools described in external.xml is in ExternalExecutor.xsd. The schema defines what high
level syntax is available to describe tools. A small example of a high level tool
description in ExternalExecutor.xsd is provided below:

<xs:element name="external">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="executable" type="xs:string" minOccurs="1"
maxOccurs="1" />

Introduction

 <xs:element name="option" type="cmdoption" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="exitcode" type="xs:integer" default="0"
minOccurs="0" maxOccurs="1" />
 <xs:element name="directory" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="path" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="env" type="envvar" minOccurs="0"
maxOccurs="unbounded" />
 <xs:element name="captureStdout" minOccurs="0" maxOccurs="1">
 <xs:complexType>
 <xs:attribute name="refid" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="stderr" type="xs:boolean" default="true" />
 </xs:complexType>
</xs:element>

The registries can be opened using a text editor (e.g. wordpad). The language defines a
tool, its inputs and outputs, a help section for information about the tool and its creator,
and its executor. The placement of a tool is up to a user. For example, several ccbay.xml
tools use the excel executor but are placed inside of ccbay.xml file because the tools are
aggregated into files according to the end application (rather than executors).

It might be advisable to view the “Help” and/or “Steps” tab for these tools in the Cyber-
Integrator application while learning how to edit the registries, since they outline
information that is defined in the tool registries. In general, one should become familiar
with the schema before modifying or adding new tools. Once the registry modifications
are finalized, the registry can be loaded during a run time via the Tools/Load Registry
menu option.

5.2 Tool Descriptors
Let us consider a new tool saved in a file called myTools.xml.
An example of a generic tool in an xml tool registry could look like:

<tool name="A tool" uuid="mySymbol-0">
 <input name="My input" type="some.type" id="0"/>

<output name="My output" type="some.type" id="0"/>
<executor>

 ...
 </executor>
 <help> This tool does something.</help>
</tool>

5.2.1 Tool Tag

<tool name="A tool" uuid="mySymbol-0">
 ...

Introduction

</tool>

The tool tag defines a tool name and a uuid5, and encloses the other internal tags
mentioned here. The Cyber-Integrator user interface displays the tool name to the user,
while the uuid is used internally by the application to differentiate between tools. Each
tool must have a unique uuid. For example, the next tool in our generic registry could
have a uuid of mySymbol-1.

5.2.2 Input and Output Data Tags
<input name="My input" type="some.type" id="0"/>
<output name="My output" type="some.type" id="0"/>

If a tool is viewed as a black box then the input is what the tool ingests and processes,
and the output is what the tool generates.

In the input and output tags, a name, a type, and an id are defined. The name is what is
displayed in the Data browser, and the type is the object class that will be input or output.
The class is usually specific to the executor, so check the executor section below for the
correct type. However, the type can be something generic like int if that is what the tool
inputs or outputs. If there are multiple inputs or multiple outputs, be sure to give each a
unique id. If there is no input or no output, that tag can be omitted. Make sure that refid
entries in the executor section match the intended input or output.

5.2.3 Help Tag
<help>This tool does something.</help>
<help><![CDATA[here’s some help

copyright and point of contact
is provided here]]> </help>

The CDATA (character data) tag is used to indicate sections of text that the XML parser
will ignore. You may add HTML to the help section, but only if it is contained within a
CDATA tag. Otherwise, the HTML would be treated as XML and would not be read
correctly. For example, the
 tag above is used to insert line breaks in that help
section.

5.2.4 Executor Tag
<executor>

 …

</executor>

5 According to http://en.wikipedia.org/wiki/UUID, a Universally Unique Identifier
(UUID is an identifier standard used in software construction, standardized by the Open
Software Foundation (OSF) as part of the Distributed Computing Environment (DCE).

Introduction

Unlike the other tags, the executor tag contains terms specific to an executor.
Note: The refid must match the corresponding id from the input or output section.

The java and external executors are by their nature generic. As a result, we have included
schema files that can be loaded into any XML editor. These schema files ensure that
formatting rules are enforced and should make it easy to add or edit tools for those executors.
Together, the java and external executors can run most of the tools you may choose to add.

Excel, copanobaydemo, and GeoLearn executors have also been included. You may wish to
add/edit the excel tools in order to define custom .xls files, worksheets, ranges, macros, etc.
The Copano Bay registry ccbay.xml often uses the excel executor, so you may want to see that
registry for some advanced uses of excel. Editing the copanobaydemo or geolearn registry
requires more advanced knowledge of their functionality.

5.3 Executor Specific Tags

5.3.1 Java Executor Tags
The Java executor by default includes tools for Im2Learn functionality. The java executor can
implement tools from any jar file. The schema file is named JavaExecutor.xsd. The schema
can be loaded into an XML editor to easily create and edit tools and will enforce correct
formatting rules. The XML for the Java executor is very generic.

An example of a Java-based tool entry is provided below:

<java>
 <parameter name="filename" type="file" description="Filename of image"/>
 <jarLocation>data/applications/im2learn</jarLocation>
 <classesToInstantiate>
 <classToInstantiate className="ncsa.im2learn.core.io.ImageLoader">
 <methods>
 <method methodName="readImage">
 <arguments>
 <argument className="java.lang.String"
parameter="true" refid="0"/>
 </arguments>
 <return
className="ncsa.im2learn.core.datatype.ImageObject" refid="0"/>
 </method>
 </methods>
 </classToInstantiate>
 </classesToInstantiate>
</java>

A rudimentary understanding of java structure is required to understand Java tools. The
jarLocation is where your java application is located. Basically you have the className
and the method you will be calling. The argument section must correspond to the input
type section and the return tag corresponds to the output type section. The provided
schema should allow you to define jar locations and other parameters. See java.xml for
more examples.

Introduction

The JavaExecutor.xsd schema file outlines exactly how java tools can be constructed to
an XML editor. However, it is fairly easy to understand if you wish to examine it
manually.

5.3.2 External Executor Tags
This executor can run applications with parameters through the command line. Much
like the java executor, the XML for the external executor is very generic. The schema
file is named ExternalExecutor.xsd.

Let us assume that we would like to execute the netstat command and display the text
returned by the external application. The following two tools are available for running the
netstat command and showing the resulting text using Notepad:

<external stderr="false">
 <executable>netstat</executable>
 <captureStdout refid="0"/>
 <option>
 <value flag="-n"/>
 </option>
</external>

<external stderr="true">
 <executable>notepad</executable>
 <option>
 <data input="0" output="0"/>
 </option>
</external>

A rudimentary understanding of the command line is required. If you run these two tools
in order you will be able to understand what they do easily. The executable tag indicates
the location of the program, much like typing something into the Start->Run box. In the
option section, the value flag indicates that the command “netstat –n” will be run.
captureStdout takes the output from from netstat –n and puts it as text as defined in the
output tag. Then, notepad can take text as input and output it as modified text.

The ExternalExecutor.xsd schema file outlines exactly how command-line tools can be
constructed to an XML editor. However, it is fairly easy to understand if you wish to
examine it manually. You may define elements like path or env to set the PATH or
environment variables, respectively, but that is not required (minOccurs="0").

5.3.3 Excel Executor Tags
This executor is working on Windows only and requires installation of Microsoft Excel.
Examples of reading from and writing to an excel file are provided below:

<excel workbookpath=" data/test_data/Test.xls">
 <query>

Introduction

 <output sheet="Sheet1" range="B2:E4, L10:P15"
 refid="0"/>
 </query>
</excel>

<excel workbookpath=" data/test_data/Test.xls">
 <query>
 <input sheet="Sheet1" range="B2:E4, L10:P15" refid="0"/>
 </query>
</excel>

The workbookpath defines the location of the xls. Then, sheet defines the worksheet number
in the xls file and range the section of the table. Input, output, and refid have corresponding
entries in the data section. Remember, output generates data that will appear in the data
browser. This means that output is used to read excel files. Input, which takes input from the
data specified in the data browser, writes excel files. Since the worksheet location must be
hardcoded, please experiment with entering the tools into myTools.xml file and editing the file
name.

Another example of a tool for executing an excel embedded macro is provide below.

<excel workbookpath="data/CopanoBay/
USGS_TX_daily_streamflow_downloader_20060919_1807.xls">
 <macro name="import_daily_flow">
 <output sheet="Control_sheet" range="B3" refid="0"/>
 <output sheet="optimization_sheet" range="K10" refid="1"/>
 <parameter sheet="Control_sheet" range="B3" value="8189200"
 prettyName="Gage Id"
possibleValues="8189200,8189500,8189300,8189700"/>
 /macro>
</excel>

Macro name defines the name of a macro that is part of the .xls file in the workbookpath.
Parameter sheet defines the combo box that Cyber-Integrator displays. If you wish to define
macros, several more examples are in ccbay.xml

5.3.4 CopanoBay Executor Tags
Types are specific to the function. For copanobaydemo, they are ncsa.ecid types.
The Copano Bay registry defines a Monte Carlo simulation by using excel macros and
copanobaydemo functions. The excel macros are outlined in the excel section above. See
ccbay.xml for examples. An example of one of the Copano Bay tools is provided below.

<copanobaydemo function="createDistributionMultipliers2">
 <input name="gage" refid="0"/>
 <input name="multiplier" refid="0"/>
 <output name="Distribution Multipliers" refid="0"/>
</copanobaydemo>

A copanobaydemo function is defined. The input and output behave like the other
executors.

Introduction

5.4 Illustration Example

Let us assume that we would like to add an external tool that is one of the functions
available from the MS DOS command environment. Particularly, our goal is to include
the echo function from the MS DOS command environment into Cyber-Integrator and
display the text passed as an argument to the echo function. This could be achieved by
invoking the command environment from Start/Run/ menu, typing cmd and then
executing “echo text” in the console window as illustrated below in Figure 5-1.

Figure 5-1: Example of echo execution in the DOS command environment.

Steps for adding the echo tool:
(1) The tool can be added using the external executor since it is a command line tool.
Thus, one would read the XML schema for the external executor first.
(2) Open a registry file and start creating tool tags as illustrated below. The tool name
“echo” will be executed by calling the external executable called cmd with arguments “/C
echo” followed by the echo parameters described by echoref parameter of type String and
value of ="Hello World!". In this case, the execution would be equivalent to “cmd /C
echo “Hello World!””

 <tool name="echo" uuid="external-3">
 <output name="Echo Output" type="text" id="0"/>
 <executor>
 <external stderr="false">
 <parameter name="echoref" type="String"
description="Text to echo" value="Hello World!"/>
 <executable>cmd</executable>
 <captureStdout refid="0"/>
 <option>
 <parameter flag="/C echo" refid =
"echoref"/>
 </option>
 </external>
 </executor>
 <help> Echo - Displays messages, or turns command-echoing on or
off. </help>
 </tool>

(3) In the Tools menu of Cyber-Integrator, load registry with the added echo tool.
(4) Select and execute the echo tool. A meta-workflow parameter dialog with “Hello
World!" will appear, and the value could be modified.
(5) Select the output of the echo tool with the notepad tool to display the string value. The
workflow is shown in Figure 5-2.

Introduction

Figure 5-2: Execution of echo command in the DOS command environment followed by notepad
visualization of the echo string.

Introduction

Chapter 6 Advanced Operations: Adding
Executors to Cyber-Integrator

This section describes another advanced operation with Cyber-Integrator such as adding a
new executor. The purpose of adding a new executor is to support adding and launching a
set of tools with minimum programming knowledge while benefiting from the Cyber-
Integrator system.

In order to add an executor, one has to become familiar with Java programming to some
degree. We provide a set of general principles for adding an executor, a motivation
example for adding a new executor and an illustration example to walk through the steps
of supporting MS DOS commands by adding a new Cyber-Integrator executor

6.1 General Principles

In general, there are three principles to follow. Create a java class that implements the
interface class package ncsa.enviroci.metaworkflow.engine.Executor provided with the
software release. The interface is shown below.

package ncsa.enviroci.metaworkflow.engine;

import java.util.Collection;
import org.w3c.dom.Element;
import ncsa.enviroci.metaworkflow.*;

/**
 * An executor is a wrapper around a specific engine. Each executor will need to
 * implement these functions. The getName() function will return the name of the
 * executor and will be used to match the executors for each tool.
 *
 * The function initialize() is called when the executor is about to be used to
 * execute a tool. This function is called after a new instance of the executor
 * is created. The function is given the XML code that is used with the tool
 * section. This XML code can be used to initialize the executor and prepare it
 * for the execute command.
 *
 * The execute command is will be used to run a tool on the engine that this
 * executor encapsulates. It is assumed that the executor is set up properly in
 * the initialize function.
 *
 * @author kooper
 * @version $Revision: 1.31 $

Introduction

 */
public interface Executor {
 public String getName();

 public void initialize(Element executor) throws Exception;

 public void execute(String execute, Engine engine, MetaWorkFlowStep step,
Collection<MetaWorkFlowParameter> parameters) throws Exception;
}

Second, create a directory META-INF/services and place inside a file with the entry
specifying the full package of your executor implementation class, for example,
ncsa.enviroci.executor.myExecutor.myDOSCMDExecutor

After compiling the executor java file with the jar files located in the Cyber-Integrator
release downloaded, you will need to create a jar file of your executor. This jar file
should contain the class files generated, as well as the META-INF/services directory
created in the second step.

To execute the Cyber-Integrator with the newly created executor, place the jar file in the
directory where the Cyber-Integrator is installed, and modify the cyberintegrator.bat or
cyberintegrator.sh file. You will need to add the jar file with your exector to the classpath
used to start the Cyber-Integrator. For example if your jar file is called myexample.jar the
bat file will read “java -Xmx512M -classpath "myexample.jar;commons-logging.jar;…”
where the bold part is the inserted text.

The tools for your executor are kept in a registry (an XML file). To automatically load
this new registry, in addition to the existing registries, place your registry file in the
directory data/registry inside of the Cyber-Integrator release. Otherwise you can load the
registry manually from Tools/Load Registry menu.

6.2 Motivation Example
Let us suppose that one does a lot of work in MS DOS command line environment. A
user executes a series of commands in the MS DOS window and would like to
create/modify/re-execute scripts consisting of a sequence of commands and forming a
workflow. While typically this would be done using a batch file, a Cyber-Integrator’
executor supporting an execution of any MS DOS command would enable a user to
benefit from all process management features.

6.3 Illustration Example

Let us design a MS DOS command executor and then execute the command “echo text”.

Introduction

Steps for adding the MS DOS executor and launching the echo tool using this
executor:
(1) Implement the Executor interface class. The implementation is provided below with
comments

package ncsa.enviroci.executor.myExecutor;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Collection;

import ncsa.enviroci.metaworkflow.MetaWorkFlowParameter;
import ncsa.enviroci.metaworkflow.MetaWorkFlowStep;
import ncsa.enviroci.metaworkflow.engine.Engine;
import ncsa.enviroci.metaworkflow.engine.Executor;

import org.w3c.dom.Element;

/**
 * This is an example MS DOS command executor
 *
 * @author pbajcsy
 * @version 1.0
 *
 */

public class myDOSCMDExecutor implements Executor {

 public myDOSCMDExecutor() {
 }

 public String getName(){
 return "dos-cmd";
 }

 public void initialize(Element executor) throws Exception{
 System.out.println("TEST: initialize myDOSCMDExecutor");
 }

 public void execute(String execute, Engine engine, MetaWorkFlowStep step,
Collection<MetaWorkFlowParameter> parameters) throws Exception{
 // notify listeners we have started execution
 engine.fireExecuteStart(execute, step, parameters);

 // retrieve the tag that will define the MS DOS command

Introduction

 Element executor = step.getExecutor();
 String func = executor.getAttribute("command");

 // verify that a command was specified in a tool registry
 if (func == null) {
 throw(new Exception("need a command"));
 }

 // implement what to do a command
 String output = new String();
 if (func.equals("echo")) {
 // retrieve the text parameter labeled as echoref
 MetaWorkFlowParameter param =
MetaWorkFlowParameter.findParameter("echoref", step, parameters);
 // execute the echo command
 Process p = Runtime.getRuntime().exec("cmd /C echo " + param.getValue());
 // retrieve the command output and put it into the output string
 BufferedReader input = new BufferedReader(new
InputStreamReader(p.getInputStream()));
 String line = input.readLine();
 while(line != null){
 output += line;
 line = input.readLine();
 }

 }
 step.getOutput("0").setData(output);

 // notify listeners we have finished execution
 engine.fireExecuteDone(execute, step, parameters);

 }

}

(2) Create the META-INF/Services/ ncsa.enviroci.metaworkflow.engine.Executor file
and put there one line:
ncsa.enviroci.executor.myExecutor.myDOSCMDExecutor

(3) Create a registry.xml file:

<registry>
 <tool name="myEcho" uuid="dos-cmd-1">
 <output name="Echo Output" type="text" id="0"/>
 <executor>
 <dos-cmd command="echo">
 <parameter name="echoref" type="String"
description="Text to echo" value="Hello World!"/>
 </dos-cmd>

Introduction

 </executor>
 <help> Echo - Displays messages, or turns command-echoing on or
off. </help>
 </tool>

</registry>

(4) Compile the project and run Cyber-Integrator. The new executor
should appear in the right pane and after loading the new registry, the
tool can be executed with the notepad viewing of the output as shown in
Figure below.

Figure 6-1: Example dos-cmd executor

Introduction

Appendix A Excluded Remote Functionality

Publishing: Cyber-Integrator has the ability to publish meta-workflows to remote
servers. They can then be accessed by others and run remotely or locally.

Figure 6-2: Publish dialog

CI-KNOW: Cyber-Integrator has an option of automatically collecting data and
processing provenance information and storing the information as Resource Description
Framework (RDF) triples in a local or remote meta-data database. The provenance
information is used for providing recommendations about the use of tools by calling an
external service called CI-KNOW. CI-KNOW recommendation dialog is shown below.

Figure 6-3: CI-Know recommendation dialog after the step “load image”.

Remote Registry: Cyber-Integrator can load remote tool registries directly into the
application from the tool menu.

Add Executor: It is also possible to add an executor to the resource pane. This process is
more involved and is not currently documented. The executors could be local or remote
specified by URLs of remote executors. This means that remote resources can be used
directly from the desktop application.

Streaming data: Events can be streamed real-time using Java Message Service (JMS).
Thus, remote servers receive events in real time and can be programmed to act on certain
events. Data input can be continuous as well as discrete.

Introduction

Login screen: Since users may choose to implement proprietary resources or keep meta-
workflow information private, a login screen provides security.

Figure 6-4: Login screen

Cyber-Integrator Server:

The server is the basis for the remote functionality.

Figure 6-5 Cyber-Integrator Server

Introduction

Java applet:

The Java applet can be used to execute meta-workflows exclusively on the remote
machine.

Figure 6-6 Cyber-Integrator Java Applet

Introduction

Appendix B Optional Application Example

Cyber-Integrator has also been developed with tools for data-driven modeling using remote
sensing imagery (exploring causes and consequences of hydrologic variables)

The goal is to construct a workflow for loading multiple raster files (images), integrating
images in terms of their spatial resolution and geographic projection, masking image
pixels of interest, extracting the values of pixels over the mask, selecting input and output
variables for data-driven modeling, obtaining a data-driven model and displaying the
results of modeling. This workflow is pretty complex and can be applied to a class of
discovery problems when phenomena are not well understood or modeled analytically.

In this application example, the input files are remotely sensed images from NASA and
the investigations focus on establishing relationships among the variables represented by
the image data. More information about the background of this application example can
be found at http://isda.ncsa.uiuc.edu/geolearn/.

Execution Sequence

This application example is using GeoLearn functionality. GeoLearn has to be installed
before the execution of this sequence. It can be downloaded from
http://isda.ncsa.uiuc.edu/download/. Please be aware that the full execution of GeoLearn
requires also installations of other software packages as listed in the GeoLearn user
manual (For data-driven modeling of small data sets, D2K must be installed - separate
license required for non-educational institutions; ArcGIS – separate license required;
MODIS Reprojection Tool (MRT)). Example data sets are also available with the
download. We will include this application example in our next release.

Introduction

Appendix C Software License
6.3.1 Illinois Open Source License
http://www.otm.uiuc.edu/faculty/forms/opensource.asp

University of Illinois/NCSA
Open Source License

Copyright © 2006, NCSA/UIUC. All rights reserved.

Developed by:

Names of Development Groups:
Image Spatial Data Analysis (ISDA) group
http://isda.ncsa.uiuc.edu/

Cyber-Environments and Technologies (CET) Division
http://www.ncsa.uiuc.edu/AboutUs/Directorates/CET.html

Names of Institutions:
National Center for Supercomputing Applications (NCSA)
http://www.ncsa.uiuc.edu/

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal with the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimers in the documentation and/or other
materials provided with the distribution.

• Neither the names of University of Illinois/NCSA, nor the names of its
contributors may be used to endorse or promote products derived from this
Software without specific prior written permission.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,

Introduction

ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS WITH THE SOFTWARE.

Software License

