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Abstract 
 

This paper presents a theoretical analysis of error 
calculations during a system design. A system is 
understood as a measurement chain that consists of units 
called transducers. In general, transducers are connected 
in three basic configurations; serial, parallel and with 
feedback. In order to illustrate the analysis of error 
calculations we consider only two connected units for 
each configuration of a measurement chain. In this paper, 
we analyze two types of error calculations for these three 
basic configurations. First, a standard error calculation is 
described assuming that transducer errors in a 
measurement chain are mutually correlated. System 
designers frequently assume an error correlation and 
therefore use standard error calculations. Second, error 
calculations are performed assuming that transducer 
errors are not mutually correlated. The case of mutually 
uncorrelated transducer errors is very common in a real 
system design since the numerical specifications of 
individual transducers are obtained from multiple 
independent catalogs. Thus, it is the uncorrelated nature 
of transducer errors that requires a modification of 
standard error calculations. We analyze error calculations 
for each configuration of transducers and for mutually 
correlated and uncorrelated transducer errors. In 
conclusion, the error formulas assuming mutually 
uncorrelated transducer errors model a real system design 
more accurately than the standard error formulas. 
 
 
1. Introduction 
 

It is well known that a typical measurement chain 
consists of a chain of measuring units called transducers. 
The first unit of a measurement chain is an appropriate 
sensor that converts physical phenomena into 
a quantitative entity (signal) suitable for further 
processing. Although a functionality of transducers in 
engineering applications varies significantly, 

the configuration of transducers in a measurement chain 
is limited by three basic schemes for connecting 
transducer units. The three configurations are serial, 
parallel and with feedback as they are shown in Figures 
1, 2 and 3. In this paper, we will present two types of 
error calculations for these three basic configurations 
performed by a system designer. The types of error 
calculations will depend on a particular configuration and 
a mutual correlation of unit errors. For simplicity, we 
will consider that each configuration of a measurement 
chain contains only two connected units and numerical 
specifications of individual units will be obtained from 
unit catalogs. 
 
2. Preliminaries 
 

Each of the three basic configurations is described 
by a linear transfer function between an input signal x 
and an output signal y. The transfer functions are 
expressed in Equation (1a) for a serial configuration (Fig. 
1), Equation (1b) for a parallel configuration (Fig. 2) and 
Equation (1c) for a configuration with feedback (Fig. 3).  
 
Serial configuration: 
 
                        y = k 1k2x                                               (1a) 

 
where k1 and  k2 are transfer constants of 
transducers  T1 and T2. 
 
Parallel configuration: 

 
y =(k1 ± k2) x                                       (1b) 

 
where the plus sign is applied if signals from transducers 
T1 and T2 are added and the minus sign is used if two 
signals are subtracted. 
 
Configuration with feedback: 
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where the minus sign is used for a positive feedback and 
the plus sign is  for a negative feedback. 

In general, stability of k1 and k2 parameters  depends 
on internal and external conditions of a measurement 
chain, for example, temperature and humidity of an 
environment or amplitude and frequency of supplied 
voltage. A manufacturer specifies the impact of all 
conditions on accuracy of a transducer as various errors 
(temperature, hysteresis, frequency error, etc.). The error 
values are commonly given as relative values. 

Let us assume that the relative errors of two 
transducers T1 and T2 are known and are denoted as δk1  

and δk 2 . According to the Law of error propagation [1], 
[2] and [3], the resulting relative error δy of an output 
signal y is characterized by the following equation  
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The presence of +/- signs in Equation (2) denotes the 
upper and lower bounds of resulting error δy.  
The A and B components are defined in Equations (2a), 
(2b) and (2c) depending on a configuration of a 
measurement chain. 
 
Serial configuration: 
 
                A=±δk1       

                            B k= ±δ 2                                                 (2a) 
 
Parallel configuration:                   
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Configuration with feedback: 
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The signs in the denominators of A and B correspond to 
the type of signal combination, e.g., signal addition 
(upper sign) or signal subtraction (lower sign) in 
Equations (2b). The error δy in Equation (2) using A and 
B from Equations (2b) will be minimized if the plus signs 
in denominator are applied.  

Similarly, the signs in the denominators of A and B 
in Equation (2c) correspond to configurations with 
positive feedback (upper sign) or negative feedback 
(lower sign). It is also apparent that the error δy 
calculated from Equations (2) and (2c) will be smaller for 
a configuration with negative feedback (plus signs in the 
denominators) than for a configuration with positive 
feedback.  

It is known that the negative feedback is used in 
measurement chains and automated control systems. In 
this case the signs A and B are opposite and it is possible 
to achieve the resulting error to be zero (δy = 0) if 
Equation (3) is satisfied. 

 
    δk1 = k1k2δk2                                    (3) 

 
On the other hand, the positive feedback is currently used 
in radio electronics during signal generation. The 
resulting error in this case is an addition of two positive 
or two negative terms expressed in Equation (2c). 
 
3. Results 
 

The aforementioned Equations (2), (2a), (2b) and  
(2c) are defined in [1], [2] and [3] and follow the Law of 
error propagation. The formulas above assume that the 
transducer errors are mutually correlated. It means that 
the correlation coefficient r is assumed to be r = ± 1.  

However, the assumption about mutually correlated 
errors of transducers is not satisfied in reality. The error 
values of transducers are obtained by a system designer 
from multiple manufacturer’s catalogs, therefore the 
individual errors are uncorrelated and the mutual 
correlation coefficient is zero (r  = 0). In this case we 
must calculate the resulting relative error δy as the square 
root of a sum of squared error components. This is based 
on the calculation of uncorrelated uncertainties [4], [5].  
The mathematical formulation is shown in Equation (4) 
and Equations (4a) and (4b) respectively. 



 

                          δy A B= ± +2 2                             (4) 
 

Let us compare Equations (2) and (4) in the case of 
serial or parallel configurations. We can see that the 
resulting relative error calculated for correlated unit 
errors is larger that the resulting error for uncorrelated 
unit errors. For instance, let us assume that two 
transducers T1 and T2 have identical uncorrelated relative 
errors (δk1 = δk2  = δk) and are in a serial configuration. 
The resulting error is equal 

 

                  δy= k41.1k2 δδ =                                (4a) 
 
as opposed to the case of correlated transducer errors 

when the resulting error is equal δy = 2 δk .  
If two transducers are in a parallel configuration and 

have identical uncorrelated errors, then the resulting error 
is equal to 

 

               δy= k7.0k25.0 δδ =                           (4b) 
 
This resulting error is smaller than the error of one 

transducer.  
Let us perform the same comparison of Equations 

(2) and (4) for the configuration with negative feedback. 
This comparison leads to a conclusion that the resulting 
error does not change significantly regardless of a mutual 
correlation of transducer errors. One can observe that the 
resulting error δy for uncorrelated transducer errors 
(Equation (4) with A and B from Equation (2c)) is larger 
than the error δy for correlated transducer errors 
(Equation (2) with A and B from Equation (2c)). 

In summary, we have shown two mathematical 
formulations for an error computation of measurement 
chains. The two formulations are expressed in Equations 
(2) or (4) and should be used appropriately with the data 
obtained from measurements (Equation (2)) or 
manufacturer’s catalogs (Equation (4)).  It is also 
important to notice that the coefficients k1 and k2 play 
role only in Equations (2b) and (2c). Equation (2a) is 
independent of the coefficients k1 and k2 and the resulting 
error is composed of relative errors only. 

 
 
4. Conclusion 
 

In this paper, we demonstrated that system designers 
should calculate the resulting relative error of 
measure ment chains according to not only a 
configuration of measurement chain but also a mutual 
correlation of transducer errors. It is the uncorrelated 
nature of transducer errors obtained from multiple 

catalogs of manufacturers that requires a modification of 
the standard error calculations performed by system 
designers. The presented error formulas model a real 
design of measurement chains more accurately than the 
standard error formulas. 
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Figure 1: Serial configuration. 
 

 
     Figure 2: Parallel configuration. 

 
 

 
       Figure 3: Configuration with 

feedback. 
 
 


