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Abstract— Feature selection is one of the fundamental prob-
lems in nearly every application of statistical modeling, and
hyperspectral data analysis is no exception. We propose a new
methodology for combining unsupervised and supervised meth-
ods under classification accuracy and computational requirement
constraints. It is designed to perform not only hyperspectral band
(wavelength range) selection but also classification method selec-
tion. The procedure involves ranking bands based on information
content and redundancy and evaluating a varying number of
the top ranked bands. We term this technique Rank Ordered
With Accuracy Selection (ROWAS). It provides a good tradeoff
between feature space exploration and computational efficiency.
To verify our methodology, we conducted experiments with
a georeferenced hyperspectral image (acquired by an AVIRIS
sensor) and categorical ground measurements.

I. INTRODUCTION

For tasks involving classification of remotely sensed im-
agery, hyperspectral sensors can provide a wealth of useful
information. Unfortunately, the efficacy of standard classifi-
cation techniques applied to such data often is hindered by
redundant or irrelevant information present in the data set
[1],[2]. Furthermore, when the algorithms scale poorly to the
large number of dimensions inherent in hyperspectral imagery,
prohibitive computational requirements can emerge.

In most application areas, the goal of hyperspectral image
analysis is to classify or discriminate objects. Driven by clas-
sification or discrimination accuracy, one would expect that,
as the number of hyperspectral bands increases, the accuracy
of classification should also increase. Nonetheless, this is not
the case in a model-based analysis [1], [3]. Redundancy in
data can cause convergence instability of models. Furthermore,
spectral value variations due to noise in redundant data prop-
agate through a classification or discrimination model. The
same is true of spectral information that has no relation to
the feature being classified in the underlying mathematical
model. Such information is the same as noise to any statistical
model, even if it is novel witin the data set and accurate.
Thus, processing a large number of hyperspectral bands can
result in higher classification error than processing a subset of
relevant bands without redundancy. In addition, computational
requirements for processing large hyperspectral data sets might
be prohibitive when using modeling techniques that scale
poorly with the number of features. A method for selecting

a data subset is therefore sought.
The driving force of our algorithm is the desire to find the

combination of bands and classification model that minimizes
an error function. Our first consideration is the No Free Lunch
Theorem [4], which states that over all sets of problems, all
classification models have the same accuracy; classification
models can only have better performance on a case by case
basis. If we make no assumption of the underlying relationship
between the hyperspectral data and the predicted variable(s), it
follows that we must try an assortment of modeling techniques
if we hope to achieve high accuracy.

If we wished to guarantee finding the absolute optimal
accuracy, we would exhaustively try all possible combinations
of bands, in all available classification algorithms, and pick the
best. This is infeasible, of course, as the number of possible
subsets of bands is 2n−1, where n is the number of bands, and
there are potentially hundreds or even thousands of bands in
hyperspectral imagery. In another possible approach, one could
attempt to use a standard optimizer (hill climbing, genetic
algorithm, etc.) to find the optimal set of bands by minimizing
the classification error a set of bands produces with a given
classifier. When we consider the time it takes to do a single
evaluation of a set of bands, and the fact that it often takes
many thousands of evaluations for an optimizer to reach a
good result (if random restarting is necessary to break out of
local optima), we find that the computational requirements are
still prohibitively high for any non-trivial data set.

In this work, we propose a method to overcome these
obstacles by ranking bands based on their information content
and distinctiveness. A wrapper method, where subsets of
features are evaluated based on cross-validated accuracy scores
[5], is then used to determine the optimal number of top ranked
bands to use.

II. METHODOLOGY

To overcome the computational and combinatorial restric-
tions, we propose to rank order the hyperspectral bands in
terms of information content, and then evaluate the classifica-
tion error of the i top bands at a time, where i starts near 1
and is incremented by some small value (in our experiments, i
starts at 2 and has an increment size of 2). Using this method
of evaluating top ranked bands, we can reformulate our main



optimization problem to that of finding the best combination of
ranking method, classification model, and number of top bands
to use (with the wavelengths of the top bands determined by
the ranking method). This reduces the problem to one that is on
the cusp of being computationally infeasible, taking an amount
of time on the order of a few days when run on multiple
modern computers for a 200 band data set. For convenience,
we refer to the general technique of ranking features, then
adding a few features at a time to a set to be evaluated by
cross-validation, as Rank Ordered With Accuracy Selection,
or ROWAS.

In this work, seven unsupervised ranking methods and three
supervised classification methods are explored. The ranking
methods can loosely be grouped into two categories. The first
are those based on measures of a individual band’s informa-
tion content. The most straightforward is a common entropy
measure. The other technique that falls into this category is
our spatial contrast measure, which indicates the level of
discrimination a band provides if we consider every pair of
spatially adjacent data points to belong to some differing,
unknown categories. The other category consists of those
methods based on redundancy among multiple bands. These
methods work mainly by penalizing bands for being similar
to others, and then selecting those that are least penalized.
Included in this category are methods based on the correlation
between pairs of bands, the predictability of one band based on
the bands adjacent to it in the spectrum, a band’s contribution
to a principal components analysis, and the degree to which a
pair of bands’ spectral ratio differs from the average spectral
ratio over all pairs of bands. The supervised methods are
naı̈ve bayes, C4.5 decision tree, and k-nearest neighbors. These
are common classification methods and are described in many
machine learning and pattern recognition texts such as [4].

The following two sections present detailed descriptions of
both the unsupervised (III) and supervised (IV) methods.

III. UNSUPERVISED METHODS

A. Information Entropy

This method is based on evaluating each band separately
using the information entropy measure ([6], chapter 3) defined
below.

H(λi) = −
m∑

k=1

p(φi
k) ln p(φi

k) (1)

p(φi
k) = p(mini

k ≤ I(λi) < maxi
k) (2)

H is the entropy measure of wavelength λi. Eq. 2 merely
formalizes that the probability distribution function of the
intensity value I(λi) is estimated via a histogram where each
bin k used to estimate a probability for a range of values of
I(λi) is defined by {mini

k,maxi
k}. m is the number of bins

used in each histogram. Generally, if the entropy value H is
high then the amount of information in the data is large. Thus,
the bands are ranked in the ascending order from the band
with the highest entropy value (large amount of information)
to the band with the smallest entropy value (small amount of
information).

B. First Spectral Derivative

The bandwidth, or wavelength range, of each band is
a variable in a hyperspectral sensor design [2], [7]. This
method explores the bandwidth variable as a function of
added information. It is apparent that if two adjacent bands
do not differ greatly then the underlying geo-spatial property
can be characterized with only one band. The mathematical
description is shown below in (3), where I represents the
hyperspectral reflectance value of central wavelength λi at
spatial location x. Thus, if D1 is equal to zero then one of the
bands is redundant. In general, the adjacent bands that differ
significantly should be retained, while similar adjacent bands
can be reduced.

D1(λi) =
∑

x

|I(x, λi) − I(x, λi+1)| (3)

C. Second Spectral Derivative

Similar to the first spectral derivative, this method explores
the bandwidth variable in hyperspectral imagery as a function
of added information. If three bands are adjacent, and the outer
bands can be used to predict the center band through linear
interpolation, then the center band is redundant. The larger
the deviation from a linear model, the higher the information
value of the band. The mathematical description of this method
is shown below, where D2 represents the measure of linear
deviation of a central wavelength λi when I is the reflectance
value of central wavelength λj at spatial location x for the
appropriate values of j.

D2(λi) =
∑

x

|I(x, λi−1) − 2I(x, λi) + I(x, λi+1)| (4)

D. Contrast Measure

This method is based on the assumption that each band
could be used for classification purposes by itself. The useful-
ness of a band would be measured by a classification error
achieved by using only the band under consideration and
minimizing the error. In order to minimize a classification
error, it is desirable to select bands that provide the highest
amplitude discrimination (image contrast) among classes. If
the class boundaries were known a priori then the measure
would be computed as a sum of all contrast values along
the boundaries. However, the class boundaries are unknown
a priori in the unsupervised case. One can evaluate contrast
at all spatial locations instead assuming that each class is
defined as a homogeneous region (no texture variation within
a class). The mathematical description of the contrast measure
computation is shown below for a discrete case.

ContrastM(λ) =
m∑

i=1

|fi − E(f)| ∗ fi (5)

f is the histogram (estimated probability density function)
of all contrast values computed across one band by using
a Sobel edge detector ([6], Chapter 4). E(f) is the sample
mean of the histogram f and is the central wavelength. m is
the number of distinct contrast values in a discrete case. The



equation includes the contrast magnitude term and the term
with the likelihood of contrast occurrence. In general, bands
characterized by a large value of ContrastM are ranked
higher (good class discrimination) than the bands with a small
value of ContrastM .

E. Spectral Ratio Measure

In many practical cases, band ratios are effective in reveal-
ing information about inverse relationship between spectral
responses to the same phenomenon (e.g., living vegetation
using the normalized difference vegetation index ([8], Chapters
16.6 and 17.7). This method explores the band ratio quotients
for ranking bands and identifies bands that differ just by a
scaling factor. The larger the deviation from the average of
ratios E(ratio) over the entire image, the higher the RatioM
value of the band. The mathematical description of this method
is shown below, where RatioM represents the measure and
I is the reflectance value of central wavelength λj at spatial
location x.

RatioM(λi) =
∑

x

∣∣∣∣ I(x, λi)
I(x, λi+1)

− E

(
I(x, λi)

I(x, λi+1)

)∣∣∣∣ (6)

F. Correlation Measure

One of the standard measures of band similarity is nor-
malized correlation [4]. The normalized correlation metric is
a statistical measure that performs well if a signal-to-noise
ratio is large enough. The correlation based band ordering
computes the normalized correlation measure for all pairs of
bands similar to the spatial autocorrelation method applied
to all ratios of pairs of image bands in [9]. Considering all
pairs of bands and not just those that are spatially adjacent
is an important distinction of the correlation based method.
The mathematical description of the normalized correlation
measure is shown below, where CorM(λi, λj) represents the
measure and I is the reflectance value of central wavelength
λ. E denotes an expected value and σ is a standard deviation.

CorM(λi, λj) =
E(I(λi) ∗ I(λj)) − E(I(λi)) ∗ E(I(λj))

σ(I(λi)) ∗ σ(I(λj))
(7)

After selecting the first least correlated band based on all
other bands, the subsequent bands are chosen as the least
correlated bands with the previously selected bands. This type
of ranking is based on mathematical analysis of [10], where
spectrally adjacent blocks of correlated bands are represented
in a selected subset.

G. Principal Component Analysis Ranking (PCAr)

Principal component analysis has been used very frequently
for band selection in the past [8]. The method transforms
a multidimensional space to one of an equivalent number
of dimensions where the first dimension contains the most
variability in the data, the second the second most, and so
on. The process of creating this space gives two sets of
outputs. The first is a set of values that indicate the amount

of variability each of the new dimensions in the new space
represents, which are also known as eigenvalues (ε). The
second is a set of vectors of coefficients, one vector for each
new dimension, that define the mapping function from the
original coordinates to the coordinate value of a particular
new dimension. The mapping function is the sum of the
original coordinate values of a data point weighted by these
coefficients. As a result, the eigenvalue εj indicates the amount
of information in a new dimension j and the coefficients cij

indicate the influence of the original dimension i on the new
dimension j. Our PCA based ranking system (PCAr) makes
use of these two facts by scoring the bands (the ”original”
dimensions in the above discussion) by (8).

PCAr(λi) =
∑

j

|εjcij | (8)

As the procedure for computing the eigenvalues and coef-
ficients is both complex and available in most data analysis
texts [4], it is omitted.

H. Spectral Spacing

This method uses no information specific to the data set un-
der consideration. Band are ranked so that for any set of top k
bands, those k bands are as evenly spaced in terms of their cen-
tral wavelengths as possible. For example, if 100 bands were to
be ranked, their order would be {50, 1, 100, 25, 75, . . .}. While
this method may seem trivial, it actually takes into account a
significant amount of domain specific-knowledge: bands that
are near each other in the spectrum almost certainly contain
similar information, bands that are far apart likely contain
relatively unique information. From a data analysis point of
view, incorporating such domain knowledge often can be more
useful than any computed knowledge, no matter how sound the
theory behind it may be.

IV. SUPERVISED CLASSIFICATION METHODS

A. Naı̈ve Bayes

Bayes law (9) provides the posterior probability of an event
Ci occuring given that event Λ has occured based on the
the prior probabilities of Ci and Λ, as well as the posterior
probability of event Λ given Ci. Here, this provides a means
of calculating the probability of each possible class Ci given
a spectral signature Λ and then selecting the class with the
highest probability P (Ci|Λ) as the prediction. P (Ci) can
easily be estimated from the set of training examples and
P (Λ), which is constant between classes, can be ignored as
the classifier scheme is simply comparing the probabilities of
different classes. To calculate the value of P (Λ|Ci), condi-
tional independence amongst attributes (here, spectral bands)
is assumed (hence the name Naı̈ve Bayes, which allows the
use of (10).

P (Ci|Λ) =
P (Λ|Ci)P (Ci)

P (Λ)
(9)



P (Λ|Ci) =
∏
k

P (I(λk)|Ci) (10)

In our implementation, the continuous variables I(λk) are
binned, and estimated probabilities based on training data are
stored in a histogram for every (Ci, I(λk)) pair for use in
(10). This introduces the need for control parameters for the
binning method. The first parameter is a switch to select either
binning by width or binning by depth. Binning by width takes
a single interval size that all bins are given, with the lower
bound of the first bin being the minimum value of the training
set. In binning by depth, all bins are required to have an equal
number of training examples, and the interval size is therefore
variable between bins. The second parameter is therefore either
the interval size or number of examples per bin, depending
on which method is indicated by the first parameter. These
parameters are optimized by the technique described in section
V

B. Instance Based

Instance based classifiers, sometimes called k-nearest neigh-
bors classifiers [11], [12], make a prediction for a test case
based on the classes of the k training examples that have the
smallest euclidean distance to that test case. The training stage
of model building is therefore nothing more than storing the
training examples. During prediction the distances to all n
training examples must be calculated for each test case, and
the k smallest (where k is a user defined control parameter) are
selected. Often, the prediction is made by a simple majority-
rules vote of these k nearest neighbors. Here, however, we
bias the votes by the inverse of the distance to the test case,
raised to the power w (another control parameter). This gives
training examples with a smaller distance a higher weight in
the voting. The weighted “vote” for each possible class Ci is
therefore given by

V (Ci) =
∑

e∈{e:C(e)=Ci}

1
dw

e

(11)

where C(e) is the class of training example e, and de is

the euclidean distance de =
√∑

k (I(λk) − I(λe
k))2 from

the training example to the test case in the spectral space.
The number of neighbors k and the exponent weight w are
optimized using the technique of section V.

C. C4.5 Decision Tree

A decision tree is a recursive search structure that can take
on one of two forms: (1) a leaf, which has an associated class,
or (2) a node that contains a test on a single attribute of the
examples, and a branch and subtree for each possible outcome
of that test [13].

C4.5 is widely considered the standard implementation of
a classification decision tree. The learning process of a C4.5
decision tree involves finding the optimal test at each node
to base the split on (or decide that the node should be a
leaf). C4.5 exhaustively tries every reasonable test criterion

at each node and selects the test based on some information
gain criteria (see below). In the case of discrete attributes,
this simply means creating a branch and subtree for every
possible value of the attribute. For continuous attributes (the
category spectral data falls into), C4.5 tries all (m−1) possible
values to perform a binary split for each attribute (less than
evaluates to the left, greater than or equal to evaluates to the
right), where m is the number of training examples that have
evaulated to the node in question. Because all attributes are
tested at each node, the algorithm can become quite expensive
for large numbers of attributes.

The information gain indicates the decrease in variability
of the classes in each of the subtrees. That is, it measures
the uniformity of the class labels of the examples in the child
nodes as compared to the parent. The information of a node,
given in terms of the set T of training examples it contains,
is given by:

H(T ) = −
∑

j

p(Cj |T ) ln p(Cj |T ) (12)

where the probability p(Cj |T ) is simply

p(Cj |T ) =
|{e : e ∈ T,C(e) = Cj}|

|T | (13)

Finally, the information gain of a potential split S is given
as the information of the parent minus the summation of the
information content of its k children:

Gain(S) = H(T ) −
∑

k

|Tk|
|T | H(Tk) (14)

Where Tk is a set of examples that is the subset of T
that evaluate to the same child node. The potential split with
the highest gain is selected and the algorithm is repeated
on the children. A node is declared to be a leaf if either
a minimum information gain threshold τi is not satisfied by
the best potential split, or similarly if the number of training
examples in the node is less than the minimum examples per
leaf τe. Both τi and τe are user defined parameters that are
optimized by the method from section V.

V. EXPERIMENTAL VERIFICATION

We implemented our ROWAS procedure as follows. First,
the bands are ordered by the unsupervised method. A set
of bands is initialized with the top two ranked bands, and
at each iteration two additional bands are added to the set.
For each of these sets, one hundred random sets of control
parameters for each supervised method are tested, and the
best set of parameters is determined using eight fold cross-
validation. The process of n-fold cross validation is used to test
the performance of a model given a single data set. The data is
split into n subsets of examples, and n models are constructed
using each subset as a hold-out set. The models’ accuracy is
scored on the hold-out set for each respective model, and the
average accuracy is accepted as the accuracy that the model
can achieve in the domain the dataset is derived from. The final



Fig. 1. Grayscale composite of the bands from 1330nm to 2040nm of the
experimental data. Taken October 20, 1999

error for a set of bands and supervised method combination
is determined by a final twelve fold cross-validation using the
parameters determined in the random optimization step. This
entire process is then repeated for each unsupervised ranking
method.

To test our procedure, we obtained a data set that consisted
of spectral measurements from an AVIRIS [14] sensor and
manually collected labels of the grass type of scanned regions
[15]. The AVIRIS sensor is a whiskbroom type sensor with
a spectral response of 400 to 2500 nm, with 224 contiguous
channels, approximately 10 nm wide. The spatial response was
0.87 mrad, which translates to approximately 3.2×3.2 m pixels
for readings taken from 1700 ft (the altitude our test image
was taken from). The set of ground labels was {Unclassified,
Black Grama, Blue Grama, Road, Black Grama/Green Veg
Mixed, Blue Grama/Green Veg Mixed}. Fig. 1 shows a single
band of the spectral image, which was taken October 20, 1999.

A. Results

The top score for each supervised, unsupervised method pair
is given in Table I. The score is the sample mean absolute error
obtained from the final 12-fold cross-validation performed for
every set of top ranked features. Also given is the number
of bands used to achieve the best score (denoted as ’count’),
which indicates how effective the unsupervised method was at
selecting the best bands first.

The graphs of figures 2 - 4 show the complete results for
the three unsupervised methods with the best scores for each
supervised method. Also included are a random ranking and an
average random plot. In addition to the rankings generated by
the supervised methods, six random rankings were tested using
the same framework. The random ranking that performed best,
as well as the average over the random trials, correspond to
these two plots, respectively. These random rankings provide a

TABLE I

THE NUMBER (COUNT) OF TOP RANKED BANDS USED TO ACHIEVE THE

BEST SAMPLE MEAN ABSOLUTE ERROR, AND THE ERROR ITSELF.

Naı̈ve Bayes Instance Based Decision Tree

Error Count Error Count Error Count

Entropy .068 92 .024 38 .081 18

1st Deriv. .105 64 .040 42 .049 22

2nd Deriv. .105 24 .040 96 .053 48

Contrast .064 98 .032 42 .085 16

Ratio .113 14 .028 98 .049 18

Correlation .081 90 .045 52 .061 86

PCAr .065 68 .024 46 .117 42

Spectral Spacing .061 20 .020 62 .113 60

Best Random .048 10 .016 24 .081 8

Average Random .063 36 .026 76 .116 92

baseline for comparison. The other unsupervised and random
rankings are omitted for the sake of clarity in the graphs.

Naı̈ve Bayes (Fig. 2) does the least well as a supervised
method. This is not totally unexpected, as it makes the
strong assumption of conditional independence among the
input features. The spectral information, however, is highly
correlated, especially among bands near each other in the
spectrum. Also noteworthy in Fig. 2 is that the performance
seems to be asymptotic as the number of bands grows. Because
the different bands contain similar information, and because
of the nature of the algorithm that treats all bands equally, it’s
not unlikely that the additional bands are simply smoothing out
the noise inherent in the data set and also the noise generated
when the data is binned.

The spectral spacing and contrast methods do the best out
of the intelligent methods. Because of the issue of correlated
features near each other in the spectrum, using the most
spread out bands for any given set of bands should cause
the fewest problems (although it doesn’t address the issue of
whether those bands are actually relevant). This is exactly
what the spacing method does. The contrast method does
the second best, but the optimum is not reached until 94
bands are used. For our purposes, this makes it little better
than any other method, as all show asymptotic behavior and
an optimum using so many bands proves little about the
suitability of the ranking method for this domain. This is
compounded by the fact that the average random optimum
was superior to all of the supervised methods except spectral
spacing. The supervised methods therefore are not considering
the information relevant to achieving high accuracy with a
naı̈ve bayes classifier. Furthermore, the best random ranking
beat even the spectral spacing method. This ranking likely
ordered bands in such a way that they were not only reasonably
uncorrelated, but also had high information content in the top
ranks.

Next was the instance based classifier, with the best results
shown in Fig. 3. Instance based classifiers can be finely tuned
to a data set due to its parameters that can vary the behaviour
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Fig. 2. Naı̈ve Bayes accuracy for top unsupervised ranking methods.
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Fig. 3. Instance Based accuracy for top unsupervised ranking methods.
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Fig. 4. Decision Tree accuracy for top unsupervised ranking methods.

of the classifier greatly. While slower than naı̈ve bayes, it
typically performances at least comparably, and often better.
Its accuracy depends not only on the parameters, but also on
the relevance of the feature set. Irrelevant features are given
as much weight as relevant ones, and simply add noise to
the predictions. Redundant features can give too much weight
to some information at the expense of that found in other
features. This was verified by the fact that the entropy and
PCAr methods performed well, as they both produce rankings
based on the information content of the bands. They do not
take into account the redundancy of bands, and are inferior
to the spectral spacing method. The optimal point for the
spacing method came at 62 bands, while the entropy and PCAr
methods performed best at 38 and 40 bands, respectively.
Furthermore, the difference between the scores was merely
0.004, which means that only a single example more was
classified correctly by the optimal point of the spacing method.
The best random ranking performed another 0.004 better.
This, again, shows that our unsupervised methods do not
produce optimal rankings, but that the efficiency of our overall
procedure allows enough methods to be evaluated to detect
such deficiencies. A further discussion of the significance of
these differences follows in (V-B).

Finally, the C4.5 decision tree results are given in Fig.4.
Decision trees do their own greedy search over features that
have the most impact on the information content of the
predicted variable. While they normally perform well, they
can suffer if noisy or irrelevant features lead them astray
early in the tree building process. Furthermore, having very
similar information in two features has been known to degrade

performance, as the decision for which of two similar features
to use is determined primarily by noise (the noisier feature may
well be picked). Somewhat surprisingly, spectral ratio and 1st

and 2nd derivative ranking methods did by far the best. These
methods performed rather poorly with the other supervised
methods. They even had only half the error rate of the spectral
spacing method, and nearly half the error rate of the best
random ranking (error rates of 0.049 for ratio and 1st deriv.,
0.117 for spectral spacing, and 0.081 for the best random).
These three ranking methods work by comparing every band to
a band immediately adjacent to it in the spectrum, promoting
those band pairs that exhibit less correlation. It’s likely this
allowed these two ranking methods to overcome the problem
of poor performance due to similar features.

B. Significance Test

Due to the small differences in accuracy among the top
ranking methods for the respective classifiers, we employed a
statistical significance test to determine the confidence level
of the superiority of the best methods. The McNemar test
for categorical/nominal data of dependent samples [16] was
used. Dependent samples, which are normally used in the
social sciences, involve using the same test subjects with
different treatments, and measuring a boolean response after
each treatment. The two treatments are then compared to
determine if one was more likely to cause the response than
the other. In our experiment, this equates to the same test
example being classified with two different classifiers. The
boolean response is then whether the classification was correct.

The McNemar test compares two sets of predictions, A



TABLE II

THE RESULTS OF THE MCNEMAR SIGNIFICANCE TEST BETWEEN THE BEST SETS OF PREDICTIONS FOR EVERY SUPERVISED METHOD AND OTHER

(COMPARED) TOP METHODS. THE CONFIDENCE LEVEL IS THE LIKELIHOOD OF THE NULL HYPOTHESIS STATING THAT THE TWO UNSUPERVISED

METHODS GENERATE THE SAME POPULATION OF PREDICTIONS.

Supervised Method Best Unsupervised Method Compared Unsupervised Method Confidence

Name Count Name Count %

Naı̈ve Bayes Random:4 10 Spectral Spacing 20 29.05

Naı̈ve Bayes Random:4 10 PCAr 68 22.72

Instance Based Random:6 24 Spectral Spacing 62 50.0

Instance Based Random:6 24 PCAr 46 25.00

Instance Based Random:6 24 Entropy 38 25.00

Decision Tree Ratio 18 1st Derivative 22 100.00

Decision Tree Ratio 18 2nd Derivative 48 50.00

Decision Tree Ratio 18 Random:4 8 59.82

and B, as follows. The number of test examples that classify
correctly for one prediction set, but not the other, are tallied
for both sets of predictions. If we assume that the two sets of
boolean right/wrong values come from the same distribution
(because the sets of predictions are from the same distribution),
then it follows that there is a πa = 0.5 and πb = 0.5
probability that prediction set A or B will be the correct one
for any given test example. That is, if only the examples that
evaluate differently are considered, then the results would be
equally distributed if they came from the same distribution.
Using the binomial distribution, the likelihood of obtaining
the observed tallies is computed by (15).

P (≥ x) =
m∑

r=x

(
m

r

)
(πb)r(πa)(m−r) (15)

Where x is the tally for the more accurate prediction set,
m is the sum of the two tallies, and πa = πb = 0.5 are the
probabilities that one prediction set will be correct when the
other is not. The value obtained from (15) is the probability
of obtaining the observed predictions if the two prediction
sets were drawn from the same population. The assumption
that πa = πb is therefore the null hypothesis, and (15) is the
confidence that it is true. A lower value therefore means it is
more likely that the ranking method with a higher accuracy
was truly better than the one it is being compared to.

There are two important considerations when using the
McNemar test. First, it only takes into account those test
examples where the predictions were different. The test does
not rely on the total number of samples in any way. The
second consideration follows from the first: the test ignores
both examples where both predictions are correct and those
where both are incorrect.

Confidence levels that the top ranking method was statisti-
cally the same as the next best methods are given for every
supervised method in Table II. Again, the lower the confidence
level, the more likely the best method is statistically superior.

When employing a significance test, it is common to require
either a 95% or 99% confidence level to accept a hypothesis.
Therefore, to accept the hypothesis that the best ranking for

a supervised method is truly better than the second best
rankings, the value in Table II must fall below at most 5%. Not
surprising because of the small differences in accuracies, this
never occurs. In all cases except ratio and 1st derivative with
decision tree, it can not be said with much certainty that the
two prediction sets are likely to be from the same population,
either. If we assume that one of the rankings tested (even if
it is one of the random rankings) is at or near the theoretical
optimal accuracy for this data set, we can conclude that the top
unsupervised methods are performing at a level insignificantly
below that optimum.

VI. CONCLUSION AND FUTURE WORK

We have presented a method for feature set selection and
classifier method selection that makes few assumptions and
performs well while using a significant, but tractable, amount
of computing power. The evaluation of top ranked bands
exhibited definite trends that allowed for the discovery of the
optimal number of bands.

In our empirical study, we found that for the AVIRIS image
with gramma grass labels we used the instance based classi-
fier performed the best. While one of six random rankings
performed the best overall, the spectral spacing, entropy, and
PCAr methods did very well, as well. The difference in error
rates between the best random and best unsupervised methods
translated into at most two additional examples of the 247 ex-
amples being classified correctly (six incorrect classifications
for PCAr and entropy, five for spectral spacing, and four for the
best random). Upon further analysis, we concluded that these
differences were not statistically significant. Furthermore, if
we make the (admittedly unsupported) assumption that the best
feature subsets produced by the ranking methods are indeed
optimal, we can conclude that at least one of the unsupervised
methods was able to reliably produce results only marginally
inferior (but not significantly inferior) to the optimal. This is
an important point to emphasize, as random rankings had the
highest overall accuracy for the instance based and naı̈ve bayes
classifiers. There were other random rankings, however, that
had significantly worse performance than the best intelligent
methods. We can then say that we are able to get excellent



performance with relatively little computing power, as opposed
to requiring the testing of many random rankings in search of
a stand-out winner.

The ROWAS method exhibited easily explainable behaviour
and produced high classification accuracy. While some of our
unsupervised methods did not perform as well as hoped, the
efficiency of the evaluation mechanism allowed them to be
quickly and definitively identified.

As our method relies on self-contained components (un-
supervised methods, supervised methods, supervised method
parameter optimization), there are numerous possibiltities for
future work. First, ranking techniques that balance the tradeoff
between information content and redundancy, instead of em-
phasizing one or the other, should make the most immediate
improvement. The naı̈ve bayes classifier can also be safely
replaced by another supervised method. Because of the sta-
bility of the bayesian classifier we used, we can conjecture
that bayesian methods do model the given problem correctly
in general, the one we chose was simply not the optimal one.
Another bayesian classifier that does not make such strong
assumptions about independence (which were known to be
invalid here), such as a bayesian belief network, may therefore
be a worthwile replacement.
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