
  
MULTISENSOR RASTER AND VECTOR DATA FUSION  

BASED ON UNCERTAINTY MODELING 
 

Sang-Chul Lee and Peter Bajcsy 
 

National Center for Supercomputing Applications 
University of Illinois at Urbana-Champaign 

{sclee,pbajcsy}@ncsa.uiuc.edu 
 

ABSTRACT 
 
We propose a new methodology for fusing temporally 
changing multisensor raster and vector data by develop-
ing a spatially and temporally varying uncertainty model 
of acquired and transformed multisensor measurements. 
The proposed uncertainty model includes errors due to 
(1) each sensor by itself, e.g., sensor noise; (2) transfor-
mations of measured values to obtain comparable physi-
cal entities for data fusion and/or to calibrate sensor 
measurements; (3) vector data spatial interpolation that is 
needed to match different spatial resolutions of multisen-
sor data; and (4) temporal interpolation that has to take 
place if multisensor acquisitions are not accurately syn-
chronized. The proposed methodology was tested using 
simulated data with varying (a) amount of sensor noise, 
(b) spatial offset of point sensors generating vector data 
and (c) model complexity of the underlying physical phe-
nomenon. We demonstrated the multisensor fusion ap-
proach with a data set from a structural health monitoring 
application domain. 

 
 

1. INTRODUCTION 
 
There exist multiple definitions of data fusion [1]. The 
data fusion, as defined in this paper, is understood as the 
process of integrating multisensor data for an end user in 
such a manner that the user is able to retrieve the most 
accurate measurement, its uncertainty, and the associated 
sensor by specifying (1) a physical entity, (2) a spatial 
location, and (3) a time from the list of physical related 
variables and measured range of spatial and temporal 
intervals.  

The multisensor data fusion problem as defined 
above occurs in most scientific measurements consisting 
of multiple instruments that collect spatially overlapped 
data simultaneously. Our focus is on a specific problem 
of raster and vector data fusion that can be found in sev-
eral domains and instrumentation systems, such as geo-
graphic information systems (GIS) [2], hazard monitor-
ing systems [3][4], aircraft navigation [4], and structural 
and earthquake engineering tests. The application driver 
for this work is the analysis of displacement measure-

ments1 and photoelastic-based strain raster measure-
ments2 for material structural health assessment in earth-
quake. 

In general, multisensor data fusion is motivated by 
(1) reducing overall redundant information from different 
sensors, (2) increasing information gain due to the utili-
zation of multiple sensors, and (3) increasing the accu-
racy and decreasing the uncertainty of the system. Fur-
thermore, multisensor data fusion can provide additional 
benefits such as the extended temporal and spatial cover-
age, reduced ambiguity, enhanced spatial resolution, and 
increased dimensionality of the measurement space.  

The problem of multisensor raster and vector data 
fusion is formulated as follows. Given a set of spatially 
dense raster measurements of a physical entity input

rλ  and 
a set of spatially sparse point measurements input

vλ  that 
are observations of the same phenomenon at the same 
spatial location and time, find the most accurate meas-
urements of a comparable physical entity  

outputλ , its uncer-
tainty, and the corresponding sensor at any observed lo-
cation and time.  

In order to solve the multisensor data fusion problem 
as formulated, one has to overcome input data heteroge-
neity first and then analyze the spatial and temporal accu-
racy of comparable entities derived from multiple sensor 
measurements. The multisensor input data heterogeneity 
occurs due to different (1) sensor coordinate systems, (2) 
temporal sampling (synchronization), (3) measured vari-
ables, and (4) data types (raster versus vector). These 
data heterogeneities can be resolved by (1) finding coor-
dinate system transformations to register data sets [6], (2) 
identifying a common time instance and applying tempo-
ral resampling, (3) performing analytical transformations 
of measured variables, and (4) fitting spatial interpola-
tion/extrapolation models [7] and applying spatial re-
sampling [8]. Although resolving data heterogeneities is 
necessary for data fusion, each data operation changes 
uncertainty associated with a spatial and a temporal sen-
sor measurement, and hence, uncertainty modeling has to 
include all data processing steps.  

                                                 
1 Krypton System (http://www.krypton.be). 
2 Stress Photonics System (http://www.stressphotonics.com). 



We propose a methodology for modeling and esti-
mating sensor data uncertainty that includes all raster and 
vector data fusion steps. The proposed uncertainty model 
is composed of error contributions due to (1) each sensor 
by itself, e.g., sensor noise; (2) transformations of meas-
ured values to obtain comparable physical entities for 
data fusion and/or to calibrate sensor measurements; (3) 
vector data spatial interpolation that is needed to match 
different spatial resolutions of multisensor data; and (4) 
temporal interpolation that has to take place if multisen-
sor acquisitions are not accurately synchronized. The 
global uncertainty model ε  is presented in Equation (1) 
below, where inputλ  is a set of measured physical entities: 
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where x  is a spatial location in the local coordinate sys-
tem, t  is a time frame, ψ  is a variable transformation 
function, and f is a function of the order of the data fu-
sion steps. 

The fusion of raster and vector data is performed by 
minimizing the uncertainty of measurements input

iλ  at any 
spatial location x  and a time instance t  after performing 
all necessary transformations iψ !  to obtain comparable 
physical entities (see Equation (2) below):  
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where input input
iλ ∈ λ , 0 number of sensorsi≤ ≤ , input

iλ  are 
different input physical entities and each linear function 

 
iψ  associated with input

iλ  converts the input entity to a 
comparable (output) physical entity that is to be fused 
into  

outputλ . The raster and vector data fusion process is 
illustrated in Figure 1 as it resolves input data heteroge-
neity issues. Figure 1 also shows the uncertainty model 
components associated with each processing step of the 

data fusion process. While some of the processing steps 
can occur multiple times during data fusion (for instance, 
vector data transformation before and after spatial regis-
tration), other processing steps might occur only with 
raster or vector data but not both (for example, spatial 
interpolation of vector data or spatial sampling of raster 
data). 

The paper is organized as follows. Section 2 de-
scribes our analytically derivation of the uncertainty 
components in Equation (1). Next, Section 3 presents the 
data fusion results obtained from simulated experiments 
to demonstrate the theoretical uncertainty model. The 
paper is summarized in Section 4. 
 

2. UNCERTAINTY MODEL FOR RASTER AND 
VECTOR DATA FUSION 

 
The fusion rule for raster and vector data can be pre-
sented as follows: 
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where rλ  and vλ are the raster and vector data values in 
the registered coordinate system, rε  and vε  represent 
the uncertainty of the interpolated vector data and the 
raster data, respectively. Using uncertainty models for vε  
and rε  and the fusion rule in Eq. (3), we can create a 
mask shown in Figure 2. This image mask (or uncertainty 
map) shows the regions that contain measurements with 
the lowest uncertainty from vector and raster sensors (red 
circular shapes in the image mask denote smaller uncer-
tainty in raster data). 
 For simplicity, we model the uncertainty distribution 

rε  of raster data by only the sensor noise component 
SENSOR ( )inputε λ in Equation (1). The sensor noise follows a 

Gaussian distribution with zero mean and standard devia-
tion rω according to Equation  (4): 

 
Figure 2:  Data fusion process with an uncertainty map. 

 

 
Figure 1: An overview of raster and vector data fusion process 
and associated uncertainty model components. 
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Our model for the uncertainty distribution vε  of vec-
tor data includes dependencies on (1) spatial location x  
and time t , (2) physical model of the measured phe-
nomenon ( , , )P PM t βx ( Pβ  is a physics-based descrip-
tor), (3) sensor noise vn , and (4) spatial and temporal 
interpolation descriptors ( , )S SII S β , ( , )T TII S β  with S  
denoting a set of data points and SIβ  and TIβ  denoting 
interpolation model descriptors. Thus, the uncertainty 
model vε  and the interpolated vector data vλ  are defined 
as follows: 

( , , , , , )P S Tv v vt M I I nε ε= x                        (5) 

( , )S SIv I Sλ β=                               (6) 
To simplify our mathematical derivation, we assume 

that (a) measurements are temporally synchronized; (b) 
sensor noise vn  follows Gaussian distribution according 
to Equation (7) and is smaller than the raster sensor noise 
( v rω ω< ); (c) PM , defined in Equation (8), corresponds 
to smoothly distributed physical entities measured on a 
test object (e.g., structure with no cracks); (d) SIβ and 

TIβ  are uniform cubic B-spline models [9] that have 
been proved to be superior to other methods with similar 
cost [10]; and (e) S is a set of uniformly distributed 
points described in Equation (9): 
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where ( , )ij init yxi j= +x x ξ ξ , initt t kτ= +  and initx  is the 
origin in the local coordinate system, ξ  is sensor spac-
ing, initt  is initial temporal sequence and τ  is temporal 
difference. Then, the final spatially adjusted variable is 
modeled as:  
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where kQ  is an interpolated patch, 0 , 1u v≤ ≤ , and P  is 
a set of control points that are derived from a set of data 
points .S  
 The uncertainty from variable transformations comes 
from linear computations ( iψ ) to obtain a new physical 
entity outputλ , e.g., addition, subtraction, and multiplica-
tion. This uncertainty component TRANSFORMATION ( , ( ))input inputε λ ψ λ  
is known as error propagation [11].   
 The uncertainty from spatial adjustment in Equation 
(1) will include the described uncertainty from variable 
transformations for interpolation and its own uncertainty 

due to interpolation model characteristics. This uncer-
tainty is presented in Equation (11): 

SPATIAL ADJUSTMENT || || propagationinterpolation
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3. RESULTS OF DATA FUSION USING 

UNCERTAINTY MAPS 
   
We conducted simulations of data fusion using uncer-
tainty maps in order to demonstrate the accuracy of the 
mathematically predictable nonuniform uncertainty map. 
For the temporal and spatial simulations, we used 1D and 
2D B-spline models. In the 1D case, the reference curve 

PM  between points 4s  and 5s is defined as: 
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Using B-spline data fitting methods [9], the interpo-
lated data are modeled as a cubic polynomial function: 
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where ia  and ib  are coefficients. Then the uncertainty 
with respect to different spatial locations (0 1)u u≤ ≤  is 
represented as 
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Figure 3(a) shows the reference curve PM , sampled data 
points is , B-spline control points ip  and the interpolated 
curve SI  in the simulated results. Figure 3(b) shows the 
uncertainty due to the spatial adjustments as in Equation 
(14). The results show that the uncertainty reaches 
maximum in the middle of two adjacent points 0.6u ≈  
and the variation of the uncertainty (gap between two 
solid curves in Figure 3(b)) is larger for higher .u  
 In the 2D case, the reference patch, surrounded by 
the data points 33 34 44, 43, , ,s s s s  is defined as: 

 (a)  (b) 
Figure 3: An example of reference and interpolated curves (Eq. 
(12) and (13)) and (b) uncertainty between s4 and s5 (Eq. (14)). 
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The interpolated patch SI  is represented as a cubic poly-
nomial function ( , , )Q u v S as shown below: 
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where ija  and ijb  are coefficients that were calculated 
from the data points S . For the 2D analysis, we calcu-
lated an uncertainty distribution SPATIAL ADJUSTMENTε  by generat-
ing ( 100)n =  sets of vector data and quantitatively 
evaluated by the sum of squared errors: 
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Figures 4(a), (b), (c), and (d) show the uncertainty 
distribution with different vector sensor spacing ,ξ each 
formed by nine joined patches from 4 by 4 vector meas-
urements. The average of all peaks decreases with 
smaller ξ  (denser point measurements), which means the 
denser vector data produce the lower uncertainty varia-
tion (from spatial adjustment) in the interpolated image.  

 
4. SUMMARY 

 
In this paper, we have developed a new methodology for 
fusing multisensor raster and vector data using uncer-
tainty models. Our fusion approach is based on selecting 
those temporally and spatially changing measurements 
that minimize the uncertainty or maximize the accuracy 
of each measurement. We have investigated uncertainty 

models for raster and vector data as a function of errors 
occurring due to (1) sensor noise, (2) transformations of 
measured values to obtain comparable physical entities 
for data fusion and/or to calibrate sensor measurements, 
(3) vector data spatial interpolation/extrapolation to 
match different spatial resolutions of multisensor data, 
and (4) temporal interpolation/extrapolation to match 
asynchronous multisensor acquisitions. While decompos-
ing the uncertainty model into components corresponding 
to individual data fusion operations, we simulated func-
tional dependencies of uncertainty model components 
with respect to (a) spatial offset of point sensors generat-
ing vector data, (b) amount of sensor noise, and (c) cur-
vature variation representing the complexity of underly-
ing measured phenomena. Our future work will focus on 
optimizing the design of real experiments, for example, 
vector sensor spacing, raster sensor resolution, based on 
our mathematical model. 
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Figure 4 : Error maps for sensor spacing ξ set to (a) 50, (b) 45,
(c) 40, and (d) 35 (pixels). x  and y  axes represent the pixel
coordinates of the interpolated image, and the z -axis shows the
standard error ( , )v vε λx .  


