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Abstract – A novel approach to depth map calibration by 
fusing localization data from wireless sensor networks 
with depth maps obtained through stereopsis is presented. 
In experiments, “smart” MICA2 wireless sensors from 
Crossbow Inc., and a Canon PowerShot SD100 digital 
camera are used. Sensor locations are determined via an 
acoustic time-of-flight ranging technique, and the 
uncalibrated depth map is computed using a binocular 
stereopsis technique. The fusion is performed (a) by 
fitting a 3-D surface to a set of apriori known co-planar 
sensor locations, and (b) by computing the depth map 
calibration model parameters through minimizing the 
squared distance between the sensor-defined plane and 
the corresponding depth map measurements. Algorithms 
for stereopsis, sensor localization, and depth map and 
sensor location fusion are presented. Calibration results 
along with error analysis follows.  A summary of 
challenges with respect to automation, computational 
requirements, and obtained accuracy of depth estimation 
conclude the paper. 

Keywords: Wireless sensor networks, depth map 
calibration, stereopsis, sensor localization. 

1 Introduction 
The general problem of 3-D information recovery has 

been addressed in the past by many researchers in the 
computer vision, machine vision and signal/image 
processing communities [1], [2], [3], and in the wireless 
communication community [4], [5], [6], [7]. The 
motivation for obtaining 3-D information often comes 
from applications that require object identification, 
recognition and modeling. There is an abundance of 
research and industrial use of 3-D information for (1) 
designing autonomous vehicle movement (collision 
avoidance and path planning), (2) performing 
teleoperation of vehicles (industrial robots, space rovers, 
aircrafts, and cars), and (3) modeling urban sites for 
military or communication purposes.  

The problem of 3-D information recovery is difficult 
regardless of whether it addresses static or dynamic object 
location estimation. In the past, the problem of depth 
recovery was approached, for example, (a) by vision 
techniques referred to as shape from cues [8] where cues 

can include stereo, motion, shading, etc…, and (b) by 
communication techniques frequently referred to as 
location sensing (radio or ultrasound time-of-flight 
lateration or signal strength analysis [9]). There are also 
some new 3-D time-of-flight techniques being developed 
using LEDs and other modulated light sources [10]. 
Although the vision and location sensing techniques have 
been proposed, very few methods are robust and accurate 
enough to be used in real-time applications. It is well 
known that many of the depth estimation algorithms are 
computationally expensive with limited robustness and 
accuracy in most unconstrained, real-life applications. The 
need for improved robustness and accuracy of depth 
estimation motivated this work on stereo and wireless 
sensor location fusion. 

The first component of our fusion system is a pair of 
visible spectrum cameras.  Contrary to wireless sensor 
networks (WSNs), cameras are viewed as traditional 
sensors and have proven to be reliable, relatively 
inexpensive, and suitable for collecting a dense set of 
measurements (a raster image) from their environment.  
Many techniques have been developed in the past two 
decades that can extract shape information from images 
and video [1]. For example, Pankati and Jain in [8] cover 
extracting shape from multiple cues. Many applications of 
computational stereopsis exist including object 
recognition, room geometry determination for robot path 
planning, extraction of land elevation from aerial 
photographs, and investigations into the human visual 
system brain [3]. In our system, we use stereopsis with 
two images to derive a depth map. An overview of our 
stereopsis system is provided in Section 2. 

The second component of our fusion system is a set of 
wireless sensors forming a network. WSNs are quickly 
becoming a major area of research.  Based on the popular 
press [11], WSNs are considered to be a disruptive 
technology capable of enabling pervasive computing on 
scales and in places that have been previously off-limits.  
Although the state-of-the art sensors have a way to go 
before becoming like “smart dust”, wireless sensor 
prototypes, referred to as motes, are sufficiently 
inexpensive and powerful to become of interest to many 
researchers from multiple application domains.  Novel 
wireless sensors are often built using Micro-Electro-
Mechanical Systems (MEMS). They are often denoted as 



“smart” because of their computing, storage, and 
communication components.  Sensor networks add the 
possibility of collecting many measurements including 
light luminance, temperature, sound, acceleration, 
magnetic field, “weather variables,” etc…  In our work, 
we use the sensor capability to record sound with a 
microphone and broadcast sound with a speaker.  We use 
the time-of-flight approach to perform sensor localization.  
An overview of our sensor localization implementation is 
provided in Section 3. 

This paper tackles the problem of data fusion between 
traditional sensors, specifically visible spectrum cameras, 
and WSNs. One could envision performing (1) depth map 
calibration, (2) sensor location calibration, or (3) depth 
map and localization fusion.  Here, we address the depth 
map calibration by first fitting a planar surface in 3-D to a 
set of apriori known co-planar sensor locations. We then 
compute the calibration model parameters (scale and 
offset) through minimizing the squared error between the 
calibrated surface and known-good (within 3cm of actual 
position) measurements.  A flowchart depicting the entire 
process from raw data to a calibrated depth map is shown 
in Figure 1.  This paper summarizes our preliminary 
results obtained with synthetic and measured data along 
with details of a sample implementation using the 
Crossbow MICA2 motes [12], TinyOS [13], and Image to 
Knowledge (I2K) [14] . 

 

 
 

Figure 1. Flowchart of Sensor Fusion 
 

In section 2, we discuss our implementation of 
computational stereopsis (stereo).  Section 3 addresses our 
sensor localization system, namely how the network of 
sensors can “figure out where it is.”  Section 4 presents the 
data fusion problem. It focuses specifically on the problem 
of how one can reconcile a [scaled] depth map (from 
section 2) and sensor localization information (from 
section 3) into a unified view of the subject relative to a 
reference.  Conclusions follow in section 5, followed by 
references. 

 
2 Computational Stereopsis 
2.1 Problem Statement 
     Stereopsis is the construction of three-dimensional 
geometry given multiple views of a scene as in [15], [16], 
[1]. Computational stereopsis is the science of using 
computers to perform stereopsis. A simplification of the 
general stereopsis configuration is the case using two 
images at a time. The 3-D reconstruction of a scene point 
is straight forward given matching points on the images; 
the scene point can be calculated as the intersection of the 
two lines passing through the matched points and the 
optical centers of the two cameras.  With known camera 
parameters, this setup reduces computational stereopsis to 
a problem of image matching. 
      A natural question to ask is: “What can be determined 
if camera parameters are unknown?”  The reference to 
camera parameters includes both intrinsic (e.g., lens 
distortions) and extrinsic (e.g., camera position) 
parameters. The intrinsic parameters can be estimated 
using software [17] while the extrinsic parameters are 
controlled during the image acquisition, for example, by 
using stereo rigs [16].  In this paper, we do not consider 
the case of unknown intrinsic parameters and we deal with 
the case of unknown extrinsic parameters only. Unknown 
extrinsic parameters naturally occur when using images 
taken from unknown scene positions.  Not having to rely 
on stereo rigs or precisely placed cameras is important in 
the “real world” as existing cameras are not likely to be of 
this type or need to be mobile (e.g. security cameras).  It is 
well known that without extrinsic parameters, stereopsis 
can still extract 3-D geometry, albeit not to scale [1]. 
 
2.2 Stereo Rectification and Matching 
     As mentioned in Section 2.1, we focus on the special 
case of stereopsis without knowledge of extrinsic camera 
parameters. In this case, it is useful to perform “stereo 
rectification” on the images prior to attempting image 
matching.  Stereo rectification is a process which aligns 
one of the images (taken to be the right image of a stereo 
pair in this paper) such that matching points in the 
resulting images are on the same “scanline” (row or y-
coordinate).  The resulting images form a “rectified stereo 
pair” that corresponds to a configuration with cameras 



displaced purely horizontally from each other simplifying 
the geometry of the problem tremendously. 
     We follow the rectification approach proposed by 
Hartley in [19] and revised by Isgro and Trucco in [20].  
We implemented the algorithm as one of the Image To 
Knowledge (I2K) software tools [14]. Matching image 
points are currently specified by hand, as automatic image 
point/feature matching is another area of research beyond 
the scope of this paper. 
     Computational stereopsis, with the addition of stereo 
rectification, reduces into an image matching problem. In 
Image to Knowledge [14], we implemented a multi-scale, 
correlation-based stereo image matching technique.  The 
correlation technique we use was proposed by 
Hirschmuller in [1] and differs from straight-forward 
correlation in its use of an adaptive window.  As shown in 
[1] and [21], this algorithm performs fairly well when 
compared with other stereo algorithms, especially those 
based on correlation, on reference stereo pairs. This 
algorithm is also termed as “real-time” in [1] and [21], 
although it is not in our implementation. Graph-cut 
stereopsis algorithms, while producing higher quality 
results, are trickier to implement and have much longer 
execution times.  We did not use them in this paper 
because of these reasons. 
     Image matching, especially in the context of 
computational stereopsis, has a couple prominent modes 
of failure. The first is if the match does not exist, 
specifically when points visible in one image are not 
present or are occluded in the other image.  The second 
failure mode is when there is a mismatch.  Mismatching is 
more likely to happen in image regions with little non-
periodic texture since a localized search cannot distinguish 
between possible matches.  The first failure mode is 
inherent to the problem and is partially handled through a 
right-to-left, left-to-right verification step; matches which 
do not appear on both runs are discarded.  The second 
failure mode is scene-dependent and can be countered by 
adding texture to the scene, if possible. 
 
3 Sensor Network Localization 
3.1 Problem Statement 
     Sensor network localization is the problem of finding 
out the locations of all sensors in the network. For the 
applications we consider in this paper, we are interested in 
knowing the coordinates of the sensors in space relative to 
a coordinate system defined by the position of one of our 
stereo cameras. In our implementation, the global 
coordinate system is arbitrarily centered on the left stereo 
camera since the origin of a coordinate system can be 
defined anywhere in the space.  
 
3.2 Time-of-Flight Ranging 
     The Crossbow MICA platform with the MTS300 
sensor board, has limited ranging capability.  Specifically, 

the only ranging capable hardware contained is a sounder, 
microphone, and tone detection circuit.  The sounder and 
tone detection circuit are both tuned to 4 kHz which limits 
the practicality of all but time of flight ranging.  Some 
research groups have experimented with custom sensor 
boards outfitted with ultrasonic transducers as ultrasound 
is a more traditional/refined market for ranging hardware.  
Good results using ultrasound ranging have been reported 
in [6] and [5].  We may investigate this technology in the 
future when it enters the commercial sensor board market. 
 

 
Figure 2. Acoustic Time-of-Flight Ranging. BS is the base 

station connected to a computer. The MICA2 motes are 
labeled a, b and c. 

 
     Acoustic time-of-flight ranging is both an accepted and 
easily implemented ranging technique.  This section 
details the strategy of time-of-flight ranging we 
implemented (see Figure 2 for a diagram).  The first step 
is to send a message to a ranging endpoint node.  The 
endpoint node, after receiving the message, 
simultaneously broadcasts a radio ranging message with a 
4 kHz chirp.  Every node in the network is configured to 
listen for the radio ranging messages and starts a timer 
which stops when the audible chirp is heard.  A broadcast 
message announcing the distance between the endpoint 
and receiving nodes is then sent for all who are interested. 
     Ranging is possible in this setup due to the differential 
in radio transmission speed (governed by the speed of 
light, the radio stack, and system-level issues) and the 
speed of sound in the sensing environment (we use 346.65 
m/s for our experiments which corresponds to the speed of 
sound in air at 25 degrees Celsius).  The granularity of the 
timer on the receiving nodes primarily dictates the 
uncertainty in the ranging estimates. We currently see 
average errors of 2.0m between pairs of motes.  For the 
remainder of the paper, we assume that localization can be 
done more accurately with more advanced technology 
(e.g., average error of 3cm for 433MHz radio link as 
reported in [6]). 
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4 Stereo and Localization Data Fusion 
     Stereo and localization data fusion brings the results of 
the preceding sections together in a consistent manner.  
Specifically, it allows us to (a) calibrate a depth map given 
localization data collected from the same scene and (b) 
calibrate sensor locations given a depth map.  Section 4.1 
introduces the problem of stereo and localization data 
fusion.  Section 4.2 details techniques that can solve the 
data fusion problem, the simplest of which we have 
implemented.  Section 4.3 reflects on results of our fusion 
algorithm on varying qualities of data. 
 
4.1 Problem Statement 
     In this paper, we focus on the problem of calibrating 
the depth map (obtained through computational stereopsis) 
using the localization data (obtained from the wireless 
sensor network).  A depth map is simply an image of a 
scene with pixel values given by the depth of each scene 
point from the camera (the minimum distance from the 
scene point to the camera plane).  Theoretically, the depth 
map is correct up to a scaling factor, so the problem 
reduces to the problem of calculating the scaling factor α.  
We look at solving the [more general] problem of a 
scaling factor and an offset.  The offset β can presumably 
handle some systematic errors that we have unknowingly 
introduced by our techniques.  In summary, equation (1) 
defines the depth map calibration relation. 

                  β+α= map depth
calib

mapdepth zz                         (1) 

 
4.2 Proposed Approach 
     The primary challenge in the data fusion problem is the 
registration of the depth map image with the wireless 
sensor locations.  We are looking for depth map image 
locations where a sensor lies. This could be viewed as a 
matching problem assuming that a sensor shape or its 
intensity profile is uniquely defined with respect to all 
other scene objects. We have considered two approaches 
to this registration problem.  
     In the first approach, a user manually specifies the 
correspondences (as we have done above for the stereo 
rectification problem).  This consists of manually 
identifying pixels in the depth map (or the corresponding 
left stereo image) of a known sensor ID.  If the 
localization step is completed successfully, knowing the 
sensor ID is equivalent to knowing the depth coordinate of 
the sensor, calib

mapdepthsensor zz = . 

     In the second approach, one can place sensors on 
visible planar surfaces in a sufficiently dense fashion.  By 
incorporating the spatial arrangement of sensors, we can 
automate parts of the calibration as described in the 
following procedure. The sensor locations in a depth map 
image coordinate system are manually selected, and the 
calibration program fits the sensor locations to a plane in 

the 3-D “world” coordinate system. This plane is used for 
depth map calibration since in the “camera” coordinate 
system, the image points corresponding to the sensors will 
also form a plane.  The depth map calibration is based on 
the fact that all sensor locations relative to an arbitrary 
point taken to be the “left” camera, in our setup, are 
known to be within scale, offset, and rotational factors 
(i.e. five degrees of freedom).   
     In this work, we use the second approach for fusing 
stereo and wireless sensor locations. In general, one would 
desire to identify a large plane, both in terms of sensors 
falling on it, and in percentage of image covered.  
Techniques for finding a planar subset in a collection of 3-
D points exist in the literature, for instance in [22].  We 
avoided this problem by manually selecting points from 
the stereo pair that lie on a plane in a world coordinate 
system defined by the left camera. 
     We continue by finding the parameters of the plane in 
3-D that fits the sensor “world” coordinate locations using 
a linear least squares approach and minimizing the 
squared error in z (the axis perpendicular to the image 
plane).  We fit the plane 0=+−+ dzbyax  to the 
sensor real-world coordinate locations.  Using the 
computed plane parameters (a, b, d) we then make the 
substitution for calib

mapdepthz  using equation (1) and solve (in 

a linear least squares fashion) the resulting problem over 
all known points to obtain α and β.  At this point the depth 
map can be calibrated and the results compared against 
what is known. 
     It is important to use high-quality points for the 
calibration step.  In addition to the requirement that the 
points be coplanar, a good fit is dependent on valid depth 
map data for the points.  As mentioned in [23], stereopsis 
will fail for points which are occluded, near specularities, 
or in areas of insufficient texture.  Points meeting some or 
all of these criteria should not be used for calibration and 
have been avoided in this section. 
 
4.3 Experimental Results 
     Section 4.2 covered the implementation of the fusion 
algorithm used in Image to Knowledge.  Section 4.3.1 
covers the details of our evaluation methodology for this 
algorithm.  The quantitative results from our experiments 
are reported in section 4.3.2. 

4.3.1 Methodology for Accuracy 
Evaluations 

     Ultimately, we measure our fusion performance by the 
accuracy of the resulting depth map relative to a ground 
truth depth map.  In practice, the ground truth depth map 
is generally not available, or is very difficult to obtain.  
The situation is a bit different in our experimental setup as 
we have the ability to acquire ground truth measurements.  
We conducted experiments with theoretical/synthesized 
stereo pairs and actual/measured stereo pairs.  In the 



synthetic image case, we can generate a dense, 
theoretically correct depth map.  In the real-world cases, 
we do not have the luxury of a dense depth map and must 
resort to a relatively small set of points at hand-verified 
distances.  
     Another issue is the error metric for comparing ground 
truth depth maps with estimated depth maps. We consider 
two error metrics: (a) the average absolute distance error 
for each pixel/hand-verified point, and (b) the average 
relative distance error as a percentage of maximum 
measured range in the image.  Both values decrease with 
more accurate calibration (fusion) and are asymptotically 
optimal (zero). The accuracy evaluation methodology for 
each set of input images is outlined next.  
 
Methodology: 

1. Obtain a stereo pair 
1a. Synthetic Images: Create a synthetic stereo pair 
using computer graphics program like POV-Ray. 
1b. Real Images: Take a stereo pair of a real scene 
using a digital camera. 
2. Prepare ground truth data 
2a.  Synthetic Images: Derive a theoretical depth map 
based on the geometry of the scene.  Pick N points 
and compute their distance.  Four of these points will 
be used for calibration and should lie in a plane. 
2b. Real Images: Record manually distance 
measurements to N points (N>4) in the scene.  Four of 
these points will be used for calibration and should lie 
in a plane.  Measure the maximum range of the scene 
depth (used in step 6) 
3. Compute an uncalibrated depth map mapdepthz  

from a stereo pair of images using the I2K Stereo 
tool. 

4. Select M points (M=4) from step 2 that fall in a 
plane, calibrate the depth map from step 3 using 
the I2K Stereo tool to obtain calib

mapdepthz  based on  

equation (1).  
5. Compute the average absolute distance error 

using all points from step 2 (excluding a border 
of a given width due to different fields of view). 

∑
∈

−=
Points

)()(1Error Dist. Abs. Avg.
i

actual
calib

mapdepth iziz
N

 
6. Compute the average relative distance as a 

percentage of maximum measured range. The 
maximum distance of the points from step 2 is 
“Max Range” and we use: 

%100
Range)(Max 

Error) Dist. Abs. (Avg.  RangeMax  of %Error ⋅=   

4.3.2 Results 
     We performed a number of different experiments in 
order to quantitatively evaluate the accuracy of results as a 

function of scene texture and calibration model 
complexity. Specifically, we conducted experiments that 
change the amount of texture in the scene (which affects 
the quality of the stereo output).  We also include results 
which have been calibrated using only “scaled” depth 
maps (assuming 0=β ).  We observed that the 
calibration results under the assumption of 0=β  led to 
smaller error in some cases, seemingly due to the 
sensitivity of calibration to the quality of the plane fit.   
 

   
 

 
Figure 3: Synthetic Plane. Top – The input [rectified] 
stereo pair generated with POV-Ray, Bottom – Computed 
depth map (pseudo-color) 
  
     As an algorithm test, we generated a synthetic stereo 
pair (Figure 3) consisting of a single textured plane.  We 
fitted a plane to four image points, as before, and verified 
that the fitted plane had a normal consistent with the 
theoretical prediction regardless of the specific 
implementation of a stereo method.  The scale and offset 
factors differed, however, leading to differing errors in the 
calibrated depth map.  Our results (excluding a border of 
width 100 pixels) are summarized in Table 1.  
 
Table 1: Results obtained for a synthetic stereo pair 
consisting of a single textured plane. 

 

N
um

be
r 

of
 

Po
in

ts
 

Sc
al

e 
α 

O
ff

se
t β

 
 A

vg
. 

A
bs

ol
ut

e 
D

is
t. 

E
rr

or
 

M
ax

im
um

 
Im

ag
e 

R
an

ge
 

E
rr

or
 %

 o
f 

M
ax

 R
an

ge
 

Scale 
Only 

57408 0.705 N/A 0.049 12 0.41% 

Scale 
and 
Offset 

57408 0.745 -0.604 0.057 12 0.43% 

 
     During testing with real stereo pairs, shown in Figure 
4, the phenomenon of near-zero scaling factors occurred 
numerous times, creating very large calibration errors.  
We believe this phenomenon arises due to over-fitting of 
our calibration points.  The errors in the chosen points 
allow for a local minimum “fit” that is just their average 



(i.e. purely an offset), rather than a purely scaled, or mixed 
solution that approaches the global minimum error.  
Theory predicts that scaling is the only operation needed 
to achieve the global minimum, so incorporating this a 
priori knowledge into the fitting step is the “correct” thing 
to do.  In real and synthetic stereo pairs, this is not always 
true, possibly due to unknown systematic errors.  
Fortunately, both “scaling”, and “scaling and offsetting” 
result in empirically similar numbers, suggesting that 
either choice will work.  We present both figures in our 
calibration results in Table 2. 
     As discussed in Section 4.2, scene points can be good 
or bad in the context of stereopsis, the bad points being 
points where stereopsis fails (image match cannot be 
made). Bad scene points can obviously skew error results, 
but they are very real.  Table 2 includes two sets of 
numbers for good and bad scene points respectively.  This 
is to give the reader a sense of the extremes seen in 
practice.  
 

   
 

   
 

   
Figure 4: Stereo Pairs used for Evaluation.  Top - The 

untextured, real scene.  Middle - The textured, real scene.  
Bottom - The textured, synthetic scene. 

     As expected according to our discussion in Section 2.2, 
we find that our algorithm performs best when texture is 
present. In an attempt to make a valid comparison between 
performance on synthetic and real data sets, we created a 
synthetic image with similar geometry to the actual scene 
and utilized the same number of calibration and testing 
points.  In our controlled setup, we find the results from 
the synthetic and real scenes measured using error percent 
of max range to be comparable.  The number of test points 
from the actual room is constrained by measurement time.  

We do not consider or compare our results with the 
error seen in the uncalibrated depth map (without the use 

of a calibrated stereo rig) since the depth map values can 
have arbitrary scale. We do not have data on how these 
range estimates compare with range estimates obtained 
using a calibrated stereo rig as we do not have currently 
access to such equipment.  This comparison is left as an 
area for further research.  
 
Table 2: Calibration Evaluations.  In cells with multiple 
numbers, the top number represents good scene points and 
the bottom number represents bad scene points. The good 
and bad points are defined according to Section 4.2 in the 
context of stereopsis. 
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Number of Points 10 
6 

9 
6 

9 
6 

Maximum Image Range 13 units 7.7m 7.7m 
Avg. Absolute Dist. Error 
( 0,0 ≠≠ βα ) 

1.538 
3.042 
 

0.423m 
3.792m 

0.396m 
2.578m 

Avg. Absolute Dist. Error 
(“scaled only” or 0=β ) 

0.574 
5.494 
 

0.612m 
5.447m 

0.333m 
3.030m 

Error % of Max Range  
( 0,0 ≠≠ βα )  

11.8% 
23.3% 

5.5% 
49.2% 

5.1% 
33.4% 
 

Error % of Max Range 
(“scaled only” or 0=β ) 

4.4% 
42.3% 

7.9% 
70.7% 
 

4.3% 
39.4% 
 

 
     Finally, we consider the magnitude of the error and 
relate it to the accuracy of the image matching using the 
textured, real scene from Figure 4 and Table 2 as an 
example. According to Eq. (1) and by assuming β to be 
zero, we found α to be 191.25.  This produces the relation 
given in Eq. (2). 
 

disparitymap depthzcalib
mapdepthz 25.19125.191 ==               (2) 

 
Consider a point at half the maximum image range (i.e. 
3.85m from the camera corresponding to a disparity of 50 
pixels). We see that a 0.333m error (4.3% of the maximum 
image range) corresponds to a disparity error of 
approximately 3 to 5 pixels (Round(191.25/3.85) – 
Round(191.25/(3.85±0.333)). If we carry out a similar 
calculation for the bad scene points with an average error 
of 3.030m, we find this corresponds to disparity errors of 
over 20 pixels. The input images have scanlines of 500 
pixels, so these disparity errors correspond to 0.9% and 
greater than 4% of the scanline length respectively. We 
believe that these 3 to 5 pixel matching errors for good 
scene points are reasonable and should be expected since 
any image matching technique will have some error and 



uncertainty. We refer the reader to [1] and [23] for 
discussions of more complex image matching techniques. 
 
5 Conclusion 
     We presented the results of a preliminary study about 
depth estimation by fusing stereo vision and wireless 
sensor locations. Other approaches to calibrating wireless 
sensor locations, or calibrating depth maps and sensor 
localizations according to their range dependent 
uncertainty are explored in [24]. The depth map 
calibration using wireless sensor networks presented in 
this paper is one possible application how to utilize 
estimated spatial information. For this application to 
become feasible, more research needs to be done on the 
underlying problems, especially on algorithms that do not 
require human intervention.  

On the infrastructural level, accurate ranging in wireless 
sensor networks remains a problem.  Some of this may be 
alleviated with future commercial developments (and 
related software), such as ultrasound sensor boards.  On 
the algorithmic level, robust techniques for matching 
image points need to be explored. The critical issue of 
matching is demonstrated by the range of errors in Table 
2. We plan to address the problem of robust image 
matching in the future by minimizing and identifying 
stereopsis failures and hence selecting only good points. 
This way, we will be able to produce the good fusion 
results as reported in Table 2. The good and bad points 
used in this paper were determined manually in order to 
understand typical worst-case and best-case errors. Once 
these problems have been solved, this application may 
become very useful as it does not require the use of 
precise cameras or calibrated stereo rigs.  As wireless 
sensor networks and pervasive computing become a 
commercial reality, this capability can become the 
underlying layer of high-level recognition and response 
mechanisms: one piece of a “smarter” world. 
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