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Abstract - This paper presents an overview of a robot 
teleoperation system using voice, gesture, and human-
computer interface (HCI) controls. The system consists of 
three basic software components including (a) acquisition 
and recognition of control commands from multiple 
inputs, (b) client-server network communication, and (c) 
command fusion and execution by a robot and its arm. 
The inputs for recognition of control commands come 
from (1) wired or wireless microphones, (2) wired 
orientation sensors mounted on human arms, and (3) HCI 
devices, such as a mouse, a keyboard or a text file with 
the sequence of control commands. The set of gesture 
commands is based on the US Navy lexicon for 
navigating aircrafts on the ground. Fusion of multiple 
commands is performed by (a) analyzing time delays and 
(b) assigning different priorities to commands and the 
clients issuing those commands. Consistent and 
conflicting commands are considered before a selected 
command is executed by a robot. For an emergency 
control, a video signal is sent to a monitoring station. 

Keywords: Robot control, command fusion, real-time 
navigation systems. 

1 Introduction 
In the past, several researchers have built systems that 

combine multiple sensors for autonomous vehicle 
navigation [7], [11]. In these applications, the problem of 
interest is about multi-sensor data fusion in order to 
reliably move a vehicle in an unknown environment. A 
fusion of higher level decisions [10], such as commands, 
is of interest when humans provide multiple inputs to a 
system.  We are considering a related problem, where 
multiple human controls are used for navigating a robot in 
a hazardous environment, or for taxiing Unmanned Aerial 
Vehicles (UAVs) on an aircraft carrier deck in the 
presence of other manned aircrafts [7], [8], [9]. In both 
application scenarios, the control commands come from 
one of the directors in charge (e.g., hazard managers or 
flight deck directors) and should be executed by a 
specially equipped robot or by an UAV. To simulate the 
problem in a laboratory environment, we used an 

ActivMedia Pioneer 2DX robot as a surrogate and 
mapped the lexicon of flight director's commands to a set 
of motion instructions available to the robot. We explored 
multiple inputs for remote robot control including voice, 
gestures and human-computer interfaces (HCI). The 
overview of the system with multiple inputs is presented 
in Figure 1. 

 
Figure 1: An overview of a system for remote robot 
control using sound, gesture and human-computer 
interface inputs. 

First, we implemented robot control using HCI inputs. A 
user can use a keyboard and type in commands of his 
choice and their corresponding parameters.  Second, we 
developed a template based speech recognition system so 
that typing can be replaced by more user friendly 
interface.  Third, we added a gesture recognition system to 
accommodate remote control execution in very noisy 
environments, for instance, a carrier deck. Finally, we 
enabled robot arm control via mouse and keyboard 
interfaces in order to perform simple loading and 
unloading operations. For emergency control purposes, we 
mounted a wireless camera on the platform of a robot to 
obtain video feedback. 

In terms of system architecture, the software is designed 
based on a client-server paradigm. All input devices 
(microphones, orientation sensors, keyboard and mouse) 
are attached to multiple computers that represent the 



clients in the developed system. In our laboratory 
experiments the robot is connected to a laptop using the 
RS232 connection.  This laptop acts as a server and 
accepts TCP client connections over the network.  Each 
client can issue control commands to the robot by sending 
commands to the server laptop. The server fuses the 
commands from all clients, and resolves any conflicts that 
may occur. After command conflicts are resolved the 
commands are translated to a set of robot instructions. 
These instructions are sent to the robot via the RS232 
connection, and are then executed. 

The main objective of this paper is to describe the 
command processing flow as illustrated in Figure 2, and 
present the fusion of multiple robot controls. According to 
Figure 2, data are acquired first by using one of the 
previously mentioned controls. After the data are 
collected, they are classified using a recognition algorithm 
into one of the 21 possible taxiing commands (text and 
arm inputs do not require classification). Once the 
command is recognized, it is sent as a packet over a local 
area network (LAN) to a server that is directly connected 
to the robot. Next, the server fuses all incoming 
commands and decides which one will be sent to the 
robot. These commands are then translated to robot 
instructions which are executed by either the robot or its 
arm. Finally, a camera mounted on the robot provides 
video feedback that acts as another client controlling the 
robot. The server can handle multiple client connections at 
once and decides what commands should be executed. 
 

 
Figure 2: Robot control system flow. Command 
acquisition and recognition are described in Section 2. 
Network architecture is outlined in Section 3. Command 
fusion, instruction translation and execution, followed by 
video feedback are overviewed in Section 4. 

2 Multi-Sensor Command Recognition 
The developed system uses the client side to do all 

sensor input data acquisition and recognition. The 
recognition output is one of the commands defined by the 
US Navy lexicon [2]. The recognized command is sent to 
a server residing on the robot. There are two types of 

commands received by a server. First, it is the type of 
robot movement commands which control the direction 
and speed of the robot chassis. The second type 
corresponds to robot arm commands that manipulate an 
arm mounted on top of the chassis. We use four interfaces 
to control the robot, which are keyboard, mouse, 
microphone, and arm orientation sensors. The keyboard 
and mouse are also used to control the arm. In our 
experiments, we used Audio-Technica wireless 
microphones or a laptop mounted microphone as audio 
input, IS300 Pro Orientation Tracker sensors [1] as 
gesture input, and regular PC interfaces as HCI input. 
New inputs can be added without any change to the 
system, as long as any new client providing commands 
from another input device adheres to the communication 
conventions of our robot command network packets.  
 
2.1 Commands from Human-Computer 

Interfaces 
In general, commands from a client can control either 

robot movement or robot arm. In our application, human-
computer interfaces are used for controlling robot 
movement or robot arm movement.  

The simplest and most reliable method for controlling a 
robot and its arm is based on a keyboard input. In our 
current system, the keyboard input allows a user (a) to 
send single instructions or commands to the robot, or (b) 
to specify a file name containing a sequence of commands 
that is loaded and executed on the server side. If a 
command is sent then only a single command value is 
transmitted. When a single instruction is sent, then the 
server receives a string with up to three numerical values 
that are mapped to the ARIA ArRobot application 
programming interfaces (API) [4]. If a file name is sent 
then the server loads the text file from its hard drive and 
executes the sequence of instructions accordingly. 
 The Pioneer 2DX robot also comes with a 50cm robotic 
arm that has five degrees of freedom. The arm can be 
currently controlled via keyboard and mouse. One could 
implement a joystick control as well. The current 
implementation of the arm control allows users to move 
one arm joint at a time, or to move all joints at once to a 
set of predefined positions.  Arm positions can be stored 
in memory, written to text files on the client side, and then 
re-used later on.  We also implemented two 
transformations that covert 3D spatial coordinates (x,y,z) 
of the tip of the arm gripper to or from rotational angles of 
the joints.  These coordinates represent the x, y, z location 
of the arm tip in millimeters from the origin defined at the 
center of the joint 1.  
 
2.2 Commands from Audio Sensors 
    Our audio control using voice interface and based on 
microphone sensors utilizes (1) a lexicon of audio controls 
(temporally varying sound signals and their meaning), (2) 



a definition of start and end of each audio control, and (3) 
an appropriate feature representation of all audio control 
signals that would maximize correct recognition. The 
lexicon of audio controls is usually defined by its control 
application. The temporal start and end points of an audio 
control can be defined by thresholding amplitude of the 
voice command from its background. Another approach is 
to use additional cues during voice recording, for example, 
a unique sound before the start and after the end of each 
audio command. The issue of appropriate feature 
representation can be resolved by (a) considering the 
number of distinct commands, (b) application specific 
real-time and computational requirements, (c) variability 
in repeating the same audio control, and (d) similarity of 
distinct audio controls.  
 In our approach, the audio control is executed in two 
phases. In the first phase also known as a training phase, 
samples (or templates) of all valid sound signals from a 
defined lexicon are collected, transformed into a set of 
features and stored prior to any recognition. The start and 
end points of each audio command are assigned manually, 
automatically or by well-controlled recording.  In the 
second phase (at the run time), any incoming sound signal 
is parsed into candidate and background temporal 
segments by filtering and amplitude based thresholding. 
The candidate segments are transformed into a set of 
features and compared against the set of templates created 
beforehand. The comparisons measure the distance 
between the candidate sound and every template.  The 
template with the lowest distance to the candidate 
determines the robot command. The temporally ordered 
sequence of interpreted robot commands is passed to the 
robot control component of the system.  The drawback of 
the template based recognition method is that it is user 
dependent and requires each user to prerecord his set of 
templates. 

2.2.1 Training: Template Creation 
In order to train the audio recognition system, we first 
record at least one training sample in wave format for each 
word or phrase that represents a command.  It is possible 
to record two or three samples per command to improve 
recognition accuracy but increase system’s recognition 
time. These recordings are then checked for clarity of 
signal and manually (or semi-automatically) edited to 
remove beginning and ending silence and noise sections 
within the speech signal. After that, the recorded audio 
waves are converted to 8-Khz, 8-bit, mono format. The 
templates are formed by extracting audio features for each 
command. In our work, we used Linear Frequency 
Cepstral Coefficients (LFCC's) as audio features and they 
are defined in Equation (1). A new vector of P = 10 
coefficients is generated for each K = 256 sample points 
of the wave at 128 sample intervals. The purpose of the 
conversion to 8-Khz is to minimize the number of 
extracted features, and hence decrease the run time needed 
for feature comparisons. 
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2.2.2 Run Time: Speech Recognition 
At the run time, a user says a command (a word or a 

phrase) into a microphone, which is recorded in a wave 
file format.  The system then re-samples the wave to 
match the sampling frequency of the templates (8-Khz, 8 
bit, mono).  The re-sampled wave is filtered to detect the 
start and end points of speech segments. In the first part of 
the filtering process, the 4-th order high pass Chebyshev 
filter is applied to reduce the low frequency background 
noise.  Next, filtering is completed by eliminating short 
length, high amplitude blips, glitches, and spikes (values 
are reduced to zero amplitude). The eliminated sounds 
correspond to noise characterized by less than 50 ms 
duration, with amplitude on the order of a spoken voice 
signal.  We chose 50 ms since any recognizable speech 
sound a human makes is longer than 50 ms. Filtering is 
important to reduce unnecessary computation during 
silence periods and to preserve only speech signals in the 
command candidate wave. Similarly to the template 
creation described in Section 2.2.1, the LFCC features are 
extracted from the filtered wave. Finally, a DTW 
(Dynamic Time Warping) algorithm [3] is used to match 
the extracted features with all templates created 
previously.  The template with the shortest error distance 
is selected to be the input command, unless the shortest 
distance is larger than a user-defined threshold of 
recognition. In this case, the input word is classified as 
unrecognized. This threshold could be experimentally 
estimated and it was set to 200 in our experiments. The 
DTW algorithm accounts for different temporal rates of 
speech.  Figure 3 shows an illustration of DTW error 
computation for the input word "speech". The vertical axis 
is the template word and horizontal is the candidate word.  
Di,j is the overall error at times i and j for the chosen 
LFCC vectors in the two speech signals. It is calculated by 
summing the previous distance and the minimum local 
distance di,j as shown in Eq. (2). 

( ).,,min 1,1,1,1,, −−−−+= jijijijiji DDDdD      (2) 
 
The distance di,j in Eq. (2) is a Euclidean distance 

between corresponding template and candidate LFCC 
feature vectors.  In this manner, the DTW-based algorithm 
finds the minimum global distance from the template and 
candidate speech beginnings to their end (bottom left to 
top right in Figure 3).  The final error EDTW between two 
speech signals is the last computed Di,j, where i and j are 
the final samples in their respective speech signals. EDTW 
corresponds to the upper right corner of the illustration in 
Figure 3. 

 



 
Figure 3 : Illustration of DTW algorithm used to compare 
two instances of the word "speech".  The picture shows 
the shortest global path from beginning to end, as well as 
the calculation of error at coordinates (i, j). 

2.2.3 Continuous Voice Signal Analysis 
The voice recognition system has to be able to 

continuously analyze incoming audio. This is 
accomplished by recording the audio in 1 second long 
segments and each second analyzing the concatenation of 
the previous two recorded segments as shown in Figure 4.  
Thus, during each second, the previous two seconds of 
sound are analyzed. For example at time t=2 sections 1 
and 2 are analyzed as shown in Figure 4. The reason for 
choosing a two second interval is because all the gestures 
in the US NAVY lexicon can be said using a normal rate 
of speech within this time limit. The reason for splitting 
the audio into one second segments is to account for the 
case when a command word starts in one segment but 
ends in the next as shown in first two cells of Figure 4. 

 
Figure 4: Continuous analysis of voice signals.  Each cell 
represents 1 second. Centered red line represents silence, 
and raised red line represents a voice signal. Two one 
second segments are analyzed each second. The duration 
is illustrated by the blue bar. 

 
It could occur in the described recognition system that a 

command is entirely contained within one segment of 
interval [t, t+1], and the intervals [t-1, t] and [t+1, t+2] 
contain only silence. In this case, this command will be 
recognized at times t+1 and t+2.  We designed the system 
to disregard a command that was recognized in the 
previous second. Figure 5 illustrates a few critical timing 
cases. Silence is illustrated as relatively constant lines with 
middle range amplitude, and voice is represented by 
humps. The cases a, b, and c in Figure 5 will be 
recognized correctly. The case d will be classified as 
unrecognized because the real commands are recognized 
in the previous and following seconds. The case e will 

also be unrecognized because the real command occurred 
in the previous second.  The case f cannot be recognized 
unless there is one second of silence before and after the 
shown segments, in which case it will be just like the case 
b.  In the case g, the 2 seconds actually span 3 one second 
segments and one of the 1st or 3rd segments contains 
more than 50% silence. We found out experimentally that 
a word can be recognized correctly most of the time even 
if a small part of its signal is cut off at either end. 

 
Figure 5: Possible cases of voice signals within the one 
second segments. They are: (a) one command spread 
across 2 seconds; (b) one command in one second and 
silence in the next; (c) silence; (d) end of command in first 
second and start of another command in 2nd second, (e) 
end of command, (f) 2 quick commands in succession, and 
(g) command spread across 3 segments. 

2.2.4 Voice Recognition Success Rates 
We achieved a 97.5% recognition rate using the 

described recognition method, and with a small 
vocabulary of two words, such as "go" and "stop". We 
used three user generated templates for each word, and 20 
recordings to be classified for each word.  The run time 
for classifying each word was less than 0.5 seconds. 
 
2.3 Commands from Arm Orientation 

Sensors 
    In addition to the previously described robot control 
interfaces, we developed an input control interface based 
on arm gestures. The arm gesture recognition system uses 
four orientation sensors [1] attached to person's arms. 
Each sensor reports the yaw, pitch and roll values (Euler 
angles). The values from all sensors are analyzed by 
modeling gesture commands in the US NAVY lexicon [2]. 
Once a gesture is recognized a packet containing the 
appropriate gesture value is sent to a server. One of the 



differences between the gesture recognition and voice 
recognition is that the voice command is said only once, 
whereas the gestures are frequently formed by periodic 
arm motions. If a gesture is recognized then theoretically 
one should be sending packets containing a command 
continuously. We decided to send a packet only the first 
time a gesture is recognized and another packet when that 
gesture stops being recognized. The gesture recognition 
system is described more extensively in our previous work 
[5], [6]. 

2.3.1 Gesture Recognition Algorithm 
 The algorithm receives three values (yaw, pitch and roll 
angles) from four sensors mounted on two arms. Each 
value is classified into steady or oscillating. Next, the 
value is categorized based on the magnitude as high, 
medium or low. Using the above classes and categories, 
each of the gestures in the lexicon was modeled so that the 
recognition could take place in real-time. The drawback of 
gesture recognition approach is that any new addition to 
the already established lexicon of commands requires 
developing new gesture models. 
 
3 Client-Server Architecture 
3.1 Client-Server Paradigm 
    The server and clients communicate over a network 
using TCP.  Most of the communication comes from the 
clients, but the server can also send packets back to the 
clients.  When a client recognizes a new command from 
its input source it will send a packet to the server.  There 
are four types of packets that are used.  Robot command 
packets contain a numerical value that is bound to a file 
containing a set of instructions on the server that the robot 
will execute.  Arm packets contain values representing the 
current and desired, positions, movement velocities and 
other parameters associated with all the joints of the robot 
arm.  File name packets contain a string of a file that is to 
be loaded, but was not bound to a numerical robot 
command beforehand.  Finally, single instruction packet 
types send across a value representing one instruction as 
well as the parameters that this instruction requires. Each 
packet is marked with a byte representing its type and the 
priority of the client sending it. 
 The arm packet type always contains six values 
representing each joint of the arm.  There is also a byte 
which determines in what context these six values are to 
be used.  Arm packets going to the server can only be used 
to tell the arm joints to move to the positions specified.  
However, arm packets coming from the server can be of 
several types.  Most likely they are just update packets 
telling the clients the current position of the arm joints, but 
can also represent the minimum, maximum, center, home, 
and movement velocity values of the joints.  These are 
necessary for the client to perform sanity checks on 
allowed arm movements as well as some calculations like 

converting arm joint byte values to degrees and vice-
versa. 
 The robot type packet can also vary.  All of our robot 
type packets come from the clients, and we never send any 
robot type packets from the server, although this can be 
done.  Most of the time the packet contains a single 
command value, which is mapped to one of the NAVY 
lexicon gestures. Such packet tells the server to execute a 
file containing instructions representing this gesture. 
There can also be other flags attached that can 
immediately stop the arm or robot without having to be 
deciphered as commands. 
 File name packets and single instruction packets have a 
non varying structure and always contain the same kind of 
information. Both are to be used for client to server 
communication only. 
 
3.2 System Advantages and Disadvantages 
 The advantages of this client-server architecture are 
modulation, no human presence required at the location of 
the robot, and wireless remote control of the robot.  Each 
client can be written separately and in a different 
programming language.  It can also run on any operating 
system as long as the client can send and receive a byte 
stream over a TCP connection.  This does not require for 
the server or other clients to be changed whenever a new 
client is created. This is very useful for the addition of 
new command interfaces in the future as the existing 
structure does not need to be changed. 
 There are several disadvantages to this system however.  
First are the delays that result from the network, these 
appear to be insignificant for us but if the robot is to be 
controlled across continents they might present problems.  
The second drawback is that if the users on different 
clients have conflicting agendas they can hinder and undo 
each others work, which requires an implementation of 
client priorities. However we assume the clients have a 
common interest. 
 
3.3 Command Delays 

There are numerous delays that happen between the 
time a user issues a command, and the time that the robot 
starts performing the instructions associated with the given 
command. These delays are shown in Figure 6. Some 
delays occur on the client side, while other delays occur 
on the server side.  The server side delays are independent 
of the input method used on the client side. Therefore the 
server side delays have the same effect on all commands. 
 The first client side delay is caused by the acquisition of 
the input.  In the case of speech recognition, it can take up 
to 2 seconds to issue an audio command. For gesture 
recognition the time to repeat an arm movement enough 
times to detect oscillation can also take a couple of 
seconds. The next client side delay is caused by the 
recognition algorithm. In speech and gesture cases, 
recognition algorithms take less than 500ms. However the 



recognition delay is also dependent on the client machine 
speed. Since the purpose of our system is to control the 
robot in real time we assume that all clients can handle the 
command recognition in a small amount of time. 

The next delay results from the command being sent 
over the network to the computer running the robot server.  
This delay can vary with the current performance of the 
network and internet, but under ideal conditions, all the 
clients are located on the same network as the server. If 
we assume that everything is on the same network the 
delay is less than 1 ms. 

After the packet is sent over the network to the server, 
three types of delays occur on the server side. The first 
delay comes from the analysis of command conflicts and 
the command to robot instruction translation. Command 
conflicts are resolved in an insignificant amount of time. 
The command to instruction translations can take up to 0.3 
ms if a direct hard drive access is used.  However, if we 
loaded all the command to instruction translation files into 
memory when the server starts, the translation delay could 
be decreased to about 0.001 ms. Next server side delay is 
caused by sending the instructions to the robot over an 
RS232 serial cable, but we have no way of measuring how 
long this takes.  Finally, there is also a delay that occurs 
on the robot itself when it sends the appropriate wheel 
velocity commands to its motors, as well as the delay of 
overcoming the inertia of its previous state. 

If we disregard the sensor data collection time, the 
overall biggest delay occurs in the client side recognition 
algorithm.  This can cause problems if one client is faster 
than another, or if the recognition algorithm is less 
complex for one type of input than another.  Therefore it is 
possible that one command is issued first on a slower 
client followed by another command issued on a faster 
client. Due to the recognition processing delay the 
command that is issued first is actually sent over the 
network after the command from the faster client, and will 
also be executed second by the server. 

 
Figure 6: Delays occurring between the time a command 
is given and executed by robot 

4 Fusion and Execution of Commands 
    When more than one command is received by the 

server at almost the same time command conflicts can 
occur.  By our default, a conflict can occur when a new 
command is received within 250 ms after the previously 

received command. To deal with conflicts we introduced 
two types of priorities, such as command and client 
priorities. Command priorities decide which possible 
commands are more important than others. Client 
priorities correspond to the reliabilities of the clients’ 
command recognitions. Another way of dealing with the 
command conflicts is to use a majority voting method. We 
assume that all the clients trying to run the robot have the 
same intentions and are monitoring the same environment 
with different sensing methods. Thus, when many 
commands arrive at the same time, the command with the 
highest count will be executed once and the others will be 
discarded. Currently we check command priorities first 
and if the conflict has not been resolved then we check the 
client priorities. The reason why client priorities are not 
checked before command priorities is to allow stop 
commands to have the highest priority no matter what 
client type they come from.  

We describe assignment of priorities in the next two 
sub-sections. Then, we classify the simultaneous 
commands into consistent and conflicting commands, and 
describe them in sections 4.3 and 4.4. One could approach 
the problem of simultaneous occurrences of multiple 
commands by combining the commands (e.g., Move 
Ahead and Turn Left). However, this solution would have 
to be driven by other applications and the command 
combination would have to be carefyllu scrutinized, for 
instance, Move Ahead and Stop.  
 
4.1 Command Priorities 

To cope with command conflicts we prioritized the 21 
possible NAVY commands. When the second received 
command had higher priority than the first one, the second 
one would overwrite the first command. If the second 
command had equal or lower priority as the first one, then 
the first one would continue its execution until it finishes 
or another command overwrites it later in time. All 
commands were given priority value ranging from 0 
(highest priority) to 21(lowest priority).  Due to the safety 
issues related to the robot and its surrounding, the Stop 
command was given the highest priority. We decided to 
rank the priority of the other remaining commands based 
on the robot movement velocity. Thus, the next highest 
priority after Stop was given to the commands Brakes, 
then Slow Down, and Slow Down Left/Right Engine. The 
commands with constant velocities, such as Move Ahead 
or Turn Right/Left were given equal priorities, but lower 
than the previous group. The next lower priority was 
given to commands that increase the movement speed of 
the robot. An unrecognized command was given the 
lowest priority. 
4.2 Client Priorities 
 Each client has a different recognition success rate and 
therefore commands coming from some clients are more 
reliable than those coming from other clients. When two 
or more conflicting commands are received from different 



clients at about the same time it may be hard to decide the 
order of execution or perhaps which commands should get 
executed and which ones should not. For this reason we 
introduced a client priority value. This way clients with 
high reliability, such as pure text and mouse input clients 
have the highest priority. We assume that a user always 
inputs correct commands. Clients that involve gesture, 
speech or other sensors with recognition rates below 100% 
have their priorities reduced based on our experimental 
results of their success rates. One problem that arises with 
the client priorities is whether the priority value is 
assigned at the client or server end.  The server does not 
know what kind of clients are connected to it, nor can it 
know beforehand what new clients types will be 
connected in the future. The design of our system is to 
accommodate an unlimited number of various client types 
and hence the priority value is decided on by the client 
itself. This priority assignment could present a problem if 
an unreliable client would assign itself the highest priority. 
To remedy this potential problem, we use a filter on the 
server side that accepts or rejects client connections based 
on their IP addresses or other criteria. In this manner, only 
clients that are trusted by the server and correctly assigned 
a priority value for themselves are accepted. 
 
4.3 Consistent Commands 

The first class of simultaneous commands is labeled as 
consistent commands. Simultaneous consistent commands 
occur when each client recognizes and issues the same 
command. Figure 7a shows two commands of type K 
being received within the 250ms conflict detection 
interval. If command K (e.g. Move Ahead) arrives at the 
server at time t, and again at time t+dt (dt is less than the 
default priority delay check of 250 ms), only the first copy 
of the command K issued at time t is executed.  There is 
no need for the server to resend the same command to the 
robot again since one of the two situations would happen. 
First, the robot's actions would seem unaffected, for 
example, the robot is already moving ahead. Second, the 
robot might repeat what it has already done or started 
doing at the first execution of the command K, for 
instance, it is turning at a given angle. For this example, 
the robot could end up in an undesired position because it 
would turn twice the desired angle. As a consequence, 
time would be wasted to issue a new command to correct 
the robot’s position. The priority delay check value is 
insignificant compared to the time it takes for the robot to 
move to a new position. Thus, by the time all clients’ 
sensors detect and recognize a new command, the delay 
timer on the previous command will have expired. For an 
expired delay timer, new incoming commands will not be 
in conflict with the commands previously executed 
between times t and d+dt. 

 

4.4 Conflicting Commands 
The second class of simultaneous commands is labeled 

as conflicting commands. As shown in Figure 7b, 
conflicting commands occur when a command K is issued 
at the time t and a command L at the time t+dt.  If L has 
higher priority, then L will overwrite K starting at time 
t+dt.  This would be the case of K being Move Ahead, and 
L being Stop. However, if L has the same priority as K 
(e.g. Turn Left and Turn Right) then L will be ignored and 
K will continue to execute.  If L has lower priority than K, 
then again L will be ignored and K will continue to 
execute. The third possibility is that more than two 
commands are received between the times t and t+250 ms 
as shown in Figure 7c. In this case, the majority voting 
method is used. The count of each command type received 
is determined and the one with the highest count wins. In 
the case of two command type counts being equal, we 
consider again the priorities of all commands as well as 
the average or maximum priorities of the clients sending 
each command. For example if 10 commands arrive and 9 
are the same, then the most likely command is the one that 
arrived 9 times. However, if 10 commands arrive with 4 
being of type K, 4 of type L, 1 of type M and 1 of type N, 
as shown in Figure 7c then the answer is not as clear. In 
this case, K and L both have the highest occurrence. Thus, 
the command priorities of K and L are compared, and if 
the conflict were not resolved then the client priorities 
would be used. We could either take the average priority 
of the 4 clients of K and the 4 clients of L, or use the 
highest client priority from each to determine which one 
from K or L would be executed as described earlier in this 
section. 
 

 
Figure 7: Illustration of possible command conflicts. The 
symbols K, L, M and N denote different robot commands. 
The pictures show the cases of A) 2 identical commands, 
B) 2 conflicting commands, and C) many conflicting 
commands. 

4.5 Video Feedback 
A forward facing camera mounted on the back of the 

robot provides visual feedback about the command 
execution. This feedback is analyzed by another client, 
which then sends robot commands to the server. The video 



from the robot’s camera can be analyzed for various 
reasons. Currently we use it for movement and color 
detection. 

The motion detector analyzes the scene of the video and 
is attuned to find human controllers. It is intended to 
detect when a new arm gesture operator attempts to 
control the robot. We use operators wearing a red and 
yellow shirt. When one operator intends to pass control to 
another one he gives a “Pass Control” command by 
pointing in the direction of another human controller. In 
order to execute the “Pass Control” command, the robot 
needs to find the new operator, which can only be done 
through a visual search. Video analysis can provide the 
direction in which the new operator is located. The video 
feedback will then send a turn robot command to the 
server. The video is continuously analyzed to detect the 
correct shirt color until the robot is turned in the direction 
of the new operator. At this point, a new operator and its 
client controls take over the robot operation. The old 
operator’s client can be either disconnected or ignored as 
it is no longer in control of this robot. 
 
5 Conclusions 
 We have developed a system that can be used to control 
a robot using an unlimited number of clients and address 
the problem of command control fusion. In our 
experiments we used four input types to control the robot 
and the arm. These were human-computer interfaces such 
as keyboard and mouse, as well as other interfaces 
including an audio sensor and arm orientation sensors. 
The control of the robot can also be handled by sensor 
input types not discussed in this paper. The prototype 
robot control system is independent of the types of clients 
that connect to the robot. The main focus of our paper is 
on the fusion of all input methods into one robot 
command. We considered timing delays, simultaneous 
commands, and client and server interpretation of robot 
commands. Video feedback from the robot was used as 
another control client to improve system’s performance 
when multiple robot operators are present. 

The developed system does not necessarily have to be 
used for simulations of UAV navigation. It can be used for 
any user-defined lexicon of commands, and a user can 
create his command to robot instruction mappings.  
Similarly, the speech recognition software can be used by 
itself, since it is template-based, and the vocabulary of 
valid commands can defined depending on an end 
application.  
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