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HYPERSPECTRAL IMAGE DATA MINING FOR BAND

SELECTION IN AGRICULTURAL APPLICATIONS

S. G. Bajwa,  P. Bajcsy, P. Groves,  L. F. Tian

ABSTRACT. Hyperspectral remote sensing produces large volumes of data, quite often requiring hundreds of megabytes to
gigabytes of memory storage for a small geographical area for one−time data collection. Although the high spectral resolution
of hyperspectral data is quite useful for capturing and discriminating subtle differences in geospatial characteristics of the
target, it contains redundant information at the band level. The objective of this study was to identify those bands that contain
the most information needed for characterizing a specific geospatial feature with minimal redundancy. Band selection is per-
formed with both unsupervised and supervised approaches. Five methods (three unsupervised and two supervised) are pro-
posed and compared to identify hyperspectral image bands to characterize soil electrical conductivity and canopy coverage
in agricultural fields. The unsupervised approach includes information entropy measure and first and second derivatives
along the spectral axis. The supervised approach selects hyperspectral bands based on supplemental ground truth data using
principal component analysis (PCA) and artificial neural network (ANN) based models. Each hyperspectral image band was
ranked using all five methods. Twenty best bands were selected by each method with the focus on soil and plant canopy charac-
terization in precision agriculture. The results showed that each of these methods may be appropriate for different applica-
tions. The entropy measure and PCA were quite useful for selecting bands with the most information content, while derivative
methods could be used for identifying absorption features. ANN measure was the most useful in selecting bands specific to
a target characteristic with minimum information redundancy. The results also indicated that a combination of wavebands
with different bandwidths will allow use of fewer than 20 bands used in this study to represent the information contained in
the top 20 bands, thus reducing image data dimensionality and volume considerably.

Keywords. Band selection, Data mining, Hyperspectral, Precision agriculture, Remote sensing.

recision farming practices are conceptually based on
within−field variability information. Modern sens-
ing technologies including remote sensing for infor-
mation gathering results in large volumes of raw

data. Remote sensing can provide high−resolution data on
geospatial variability in yield−limiting soil and crop vari-
ables. It can be used for mapping soil characteristics (Ahn et
al., 1999; Bajwa et al., 2001), leaf area index (LAI), crop de-
velopment (Ghinelli and Bennet, 1998), canopy coverage,
pest infestation, plant water content (Bach and Mauser,
1995), and crop stresses (Gopalapillai and Tian, 1999; Bajwa
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and Tian, 2001). Lack of data mining tools and inability of
agriculture producers and consultants to extract useful infor-
mation from large volumes of raw data on yield−limiting fac-
tors is a major hurdle in the widespread application of remote
sensing at production level.

The benefits of hyperspectral sensors come from relative-
ly high spatial and spectral resolutions (Birk and McCord,
1994). The high spectral resolution aids in discovering subtle
differences in narrow−band reflectance caused by different
vegetation and soil characteristics that are not discernible
with multispectral data. However, much of the information
in hyperspectral data is redundant. Individual hyperspectral
bands are spatially and spectrally correlated (fig. 1).
Removal of redundancy and identification of the most
significant hyperspectral bands for characterizing a specific
geospatial phenomenon is of utmost interest to several
application domains. Most of the commercially available
remote sensing algorithms and software packages were
developed for multispectral data processing, mainly for
commercially  available image data (Karimi, 1998). There
are not many analytical tools developed for hyperspectral
data processing. The analytical tools developed for multi-
spectral data fail to make use of added information in
hyperspectral data (Schowengerdt, 1997). Although high
dimensionality  in hyperspectral images results in increased
class separability in classification problems, it leads to high
errors in parameter estimation (Hsieh and Landgrebe,
1998a). There is ongoing research to modify parametric
classification methods to fully utilize added information in
hyperspectral data without the loss of accuracy in parameter
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Figure 1. Interrelationship between image bands of a hyperspectral image. Correlation and covariance of band 1 with respect to all 120 bands, and
band 1 variance, are plotted against band wavelength for field 2.

estimation (Hsieh and Landgrebe, 1998b; Tu, 2000). An al-
ternate method that would extract information pertinent to
one or more target properties without assuming a data dis-
tribution would be of great interest to applications in preci-
sion agriculture, forestry, and environmental monitoring.

The concept of signature bands or bands that are most
responsive to a specific target characteristics is similar to the
spectral fingerprints used in geological and mining applica-
tions (Schowengerdt, 1997). Unlike the space−scale aspect of
spectral fingerprints, the signature bands utilize the absor-
bance−reflectance characteristics of individual wavebands or
waveband regions. The experimental application of hyper-
spectral data in precision farming is focused on mapping
narrow−band target reflectance to ground measurements
used for crop characterizations. Signature band identification
will be useful not only for geospatial characterization of
specific target properties but also for application−dependent
hyperspectral data compression and sensor characterization.

Our goal is to evaluate five methods for band selection
from hyperspectral data with or without knowledge of the
application domain. Signature bands can be extracted by
using two fundamental approaches: unsupervised and super-
vised. The unsupervised approaches are application indepen-
dent. They include information entropy measure and first and
second derivatives along the spectral axis. The supervised
approaches select hyperspectral bands based on supplemen-
tal ground data using principal component analysis (PCA)
and an artificial neural network (ANN) based model.

We focus on methods for hyperspectral band selection that
lead to data compression and spectral signature characteriza-
tion. From a compression standpoint, these methods differ
from pixel−based compression techniques such as that
defined by the Joint Photographic Expert’s Group (JPEG)
(Taubman and Marcellin, 2000). The proposed methods
compress data at the band level rather than at the pixel level
as done by JPEG (Taubman and Marcellin, 2000). From a
spectral signature characterization viewpoint, we propose a
variety of methods that are appropriate for representation
(information entropy, PCA) or for class discrimination (first
and second derivative along spectral axis, ANN). While
concise image representation and class discrimination meth-
ods have different objectives, a tradeoff of both objectives
can provide satisfactory compression and classification
results for an application. For example, an orthogonal
subspace projection approach to classify images consider-

ably reduced data dimensionality while detecting spectral
signatures of interest (Harsanyi and Chang, 1994). Another
example would be a statistical separation method based on
spatial autocorrelation that optimized the selection of bands
with and without a priori knowledge of the scene (Petrie and
Heasler, 1998).

The three major objectives of our study were to:
� Research and develop three unsupervised methods for

rank ordering of bands from hyperspectral imagery.
The methods are based on evaluation of each band sep-
arately with three different criteria. The first method is
based on an information entropy criterion. The second
and third methods are based on a residual criterion de-
rived from the first and second derivatives along spec-
tral axis with two and three adjacent bands,
respectively.

� Design and implement two supervised methods based
on ANN and PCA that use ground truth data for band
selection.

� Compare the results obtained from the unsupervised
and supervised methods.

METHODOLOGY
EXPERIMENTAL DESIGN

Remote sensing data were acquired from three agricultur-
al fields located in the Midwest U.S. These three fields
included field 1 and field 2 located in Missouri, and field 3
located in Illinois (table 1). Hyperspectral image data were
collected from fields 1 and 2 on April 26, 2000, and from field
3 on June 8, 2000. The supplemental ground data for fields
1 and 2 included two measures of apparent soil electrical
conductivity (ECa, in mS/m) measured with two different
devices. The first device was a Geonics EM−38RT (Geoma-
trix Earth Science, Ltd., Hockliffe, U.K.), which measured
ECa in the top 120 cm of soil using a non−invasive method
called electromagnetic (EM) induction. The ECa data
collected with the Geonics EM−38RT are referred to as EM
data in this article. The second device was a VERIS 3100 soil
mapping system, which is a direct−contact soil EC meter. The
ECa data collected by the VERIS mapping system are
referred to as VERIS data. The VERIS shallow (VERIS−s)
represented the ECa for the top 33 cm soil, and the VERIS
deep (VERIS−d) represented the ECa for the top 100 cm soil.
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Table 1. Descriptions of the three fields used in the study.
Field Area (ha) Crop Image Date

Field 1, Missouri 36 Soybean April 26, 2000
Field 2, Missouri 15 Corn April 26, 2000
Field 3, Illinois 16 Soybean June 8, 2000

The ECa is a good indicator of yield−limiting soil physical
and chemical properties such as soil texture, Ca, Mg, K, and
CEC in some soils, and soil water content (Fritz et al., 1999;
Kitchen et al., 2000). The soil EC measurements have long
been used to identify contrasting soil properties in the geolog-
ical and environmental domains (Lund et al., 1999).

The ground data for field 3 included canopy coverage,
measured as a fraction of ground area covered by crop
canopy. The canopy coverage was measured for every 16 cm
square area in the field. The canopy coverage was collected
on June 8, 2000, with a vehicle−mounted vision system (Tian
et al., 1999). Ground truth data were collected with the
objective of characterizing specific geospatial variability
within a field at a maximum possible resolution. The
resolution of the VERIS and EM data was approximately
10 m between adjacent passes. A summary of the ground
truth database used in this study is given in table 2. Both EM
and VERIS data showed very high variabilitywithin each
field.

IMAGE ACQUISITION AND PREPROCESSING

The image data were collected from an aerial platform
with a NASA RDACS/H−3, 120−channel prism−grating,
pushbroom hyperspectral sensor. Each image had 2500 rows,
640 columns, and 120 bands per pixel. The 120 bands
corresponded to the visible to near−infrared range of 471 to
828 nm, recorded at a spectral resolution of 3 nm. The
hyperspectral sensor was mounted on a fixed−wing aircraft
and was flown over the fields for data collection. The images
were collected from altitudes of approximately 1200 m and
2250 m. The ground spatial interval (GSI) of the images was
approximately 1 m for fields 1 and 2, and 2 m for field 3. The
image preprocessing included four steps: (1) image calibra-
tion for sensor noise, (2) correction for geometric distortion
caused by platform motion, (3) image georegistration, and
(4) image calibration for variable illumination (fig. 2). The
sensor−based noise varied with weather conditions. On each
day of data collection, an image was taken with the lens
covered to obtain the noise data for the sensor. This image
was called the dark image. To minimize sensor noise, the raw
image was first transformed with the help of the dark image
into a minimum noise fraction (MNF) image (Green et al.,
1988). The MNF transformation is similar to a principal 

Table 2. Geographic database of the experimental fields listing the
statistics on apparent soil electrical conductivity measurements (ECa)

made with EM and VERIS instruments (in mS/m) and canopy
coverage as a ratio of canopy area to ground area.

Field
Field

Variable[a] Mean Variance Min. Max.

Field 1
(Missouri)

ECa−EM 30.71 14.08 15.85 77.74Field 1
(Missouri) ECa−VERIS−s 9.74 9.89 1.60 34.70

ECa−VERIS−d 19.61 72.24 2.30 53.80

Field 2 ECa−EM 34.79 40.83 0 60.33Field 2
(Missouri) ECa−VERIS−s 15.21 56.74 1.50 62.30

ECa−VERIS−d 23.71 133.51 2.60 77.00

Field 3
(Illinois)

Canopy
coverage

0.203 0.017 0 1

[a] EM refers to ECa measured with a Geonics EM38RT, which measures
up to 120 cm depth in soil. VERIS−s refers to ECa measured up to 33 cm
depth, and VERIS−d refers to ECa measured up to 100 cm depth with
VERIS equipment.

component transform. The bands of the MNF image that con-
tained significant information were transformed back to
image space using inverse MNF transform.

The hyperspectral images acquired with the airborne
pushbroom scanner showed varying degrees of geometric
distortion caused by platform motion under atmospheric
turbulence. Roll, pitch, and yaw of the aircraft led to
significant geometric errors in pushbroom scanner data.
Among the platform−based errors, the aircraft roll was the
major source of image distortion, followed by aircraft pitch.
The images after correcting for sensor noise were prepro-
cessed to eliminate platform−based geometric distortion.
Figure 3a illustrates image distortion caused by aircraft roll.
The image shows gradual shifting of linear features, resulting
in a distorted field boundary. To eliminate roll, first a known
linear feature along the in−track direction was identified in
the image. Then each row of the image was shifted in the
cross−track direction to straighten the known linear feature.
After correcting the image for geometric error caused by
platform roll, the image layout (fig. 3b) appeared closer to the
actual field layout. The geometric distortion due to push-
broom scanner geometry was considered negligible because
of the low altitude of the airborne sensor (a maximum of
7500 ft) and the small area covered in each image.

The distortion−corrected images were then georeferenced
using a triangulation method with bilinear resampling
(fig. 3). Fifteen to twenty ground control points (GCP)
distributed inside and outside the field boundary were used
for georeferencing each image. Markers or white−painted
boards placed in and around the field along with static
features such as pumps, crossroads, and field corners were
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Figure 2. Flowchart showing the steps in image preprocessing for correction, georeferencing, and calibration (“MNF transform” refers to minimum
noise fraction transformation).
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(a)

(b)

Figure 3. A raw image of field 1: (a) platform−based image distortion, and (b) after correcting for error caused by platform roll.

used as GCPs. All the images were corrected and calibrated
using ENVI software package (Research Systems, Inc.,
Boulder, Colo.). The georeferenced images were corrected
for variable illumination using an empirical line method
(Smith and Milton, 1999). The raw images come as digital
numbers (DN) or gray−level values. The empirical line cal-
ibration procedure transformed the DNs to apparent reflec-
tance of the target, which does not change significantly with
illumination conditions. For applying the empirical line
method of calibration, markers or tarps (also called placards)
of eight different reflectance levels of 2%, 4%, 8%, 16%,
32%, 48%, 64%, and 83% were placed on the field at the time
of imaging. Hyperspectral images of placards were taken at
the same resolution as the hyperspectral images of the field
on each collection day. The empirical line method assumes
that the calibrated values are linearly related to the uncali-
brated values. This linear relationship between the known re-
flectance and the observed DNs of the placards was
calculated by linear regression and applied to the whole
image. The image acquisition time was limited to between
10:00 a.m. and 2:00 p.m. to minimize the errors due to the
changes in sun angle.

UNSUPERVISED METHODS FOR BAND SELECTION

The three unsupervised methods of hyperspectral band
selection did not require image preprocessing since they are
application−independent  techniques based on spatial and
spectral similarity of bands. The two supervised methods
(PCA and ANN) required image preprocessing into apparent
reflectance since they used a model of target characteristics
on hyperspectral data to establish the band order. The first
and second derivatives and the ANN methods were imple-
mented in the software environment called Data to Knowl-
edge (D2K) developed under the Image to Knowledge (I2K)
tools at the National Center for Supercomputing Applica-
tions (NCSA, 2000).

Method 1: Information Entropy
Information entropy is based on evaluating each band

separately using the entropy measure (H) defined in equation 1:

∑
=

−=
m

i
ii ppH

1
ln  (1)

where p is the probability of occurrence of a DN in a hyper-
spectral band, and m is the number of distinct DNs in that
band. The probabilities are estimated by computing a histo-
gram of DNs. Generally, if the entropy value (H) is high, then
the amount of information in the data is large. Thus, the bands
are ranked in descending order from the band with the highest
entropy value (large amount of information) to the band with
the smallest entropy value (small amount of information).

Method 2: First Spectral Derivative
The bandwidth of each band can be a variable in

hyperspectral sensor design. The first spectral derivative
method explores the bandwidth variable as a function of
added information. It is apparent that if two adjacent bands
do not differ much, then the underlying geospatial phenome-
non can be characterized with only one band. The mathemati-
cal description of first spectral derivative is illustrated in
equation 2:

( )
λ

λ,
1 ∂

∂= xI
D  (2)

where I represents the hyperspectral value, x is a spatial loca-
tion, and � is the band characteristic or central wavelength.
Thus, if D1 is equal to zero, then one of the bands is redun-
dant. In general, adjacent bands that differ a lot should be pre-
served for characterization, while similar adjacent bands can
be reduced. In addition to evaluating band characteristics,
this method is instrumental in bandwidth design of a remote
hyperspectral sensor.

Method 3: Second Spectral Derivative
Similar to method 2, the second spectral derivative

explores the bandwidth variable in hyperspectral imagery as
a function of added information. Contrary to method 2, this
approach identifies bands that can be represented by a linear
combination of adjacent bands. Thus, if two adjacent bands
can linearly interpolate the third band, then the third band is
redundant. The larger the deviation from a linear model, the
higher the information value of the band. The mathematical
description of this method is shown in equation 3:

( )
2

2

2
λ

λ,

∂
∂= xI

D  (3)
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where D2 represents the measure of linear deviation, I is a hy-
perspectral value,x is a spatial location, and � is the band
wavelength.

SUPERVISED METHODS FOR BAND SELECTION

Method 4: Artificial Neural Network (ANN)
Artificial neural networks are used in a wide variety of

applications and in many disciplines because of their
robustness in making predictions based on training examples.
They are particularly applicable in agricultural problems for
modeling complex relationships, where stochastic factors
play major roles (Mukherjee, 1997). An example of ANN
application in precision agriculture is to model the relation-
ship between yield−limiting factors estimated with remote
sensing data and yield measurements (Goh, 1995; Gopalapil-
lai and Tian, 1999). Stochastic factors cause significant
spatial variations in crop yield (20% to 80%, according to
Bakhsh et al., 1998). Therefore, remote sensing is a valuable
tool to monitor the in−season effect of stochastic factors on
a near−real−time basis.

In order to train the ANN algorithm, training data was
converted into ASCII format and then normalized. A plain
text file was created with entries containing geographical
position, field data (EM, VERIS, and canopy), and the
reflectance data from each of the 120 bands of spectral data.
Each column of the table (every vector of ground truth data
and each spectral band) was independently normalized and
scaled to a range of 0.1 to 0.9 for the benefit of the ANN.
Although a neural network can normally output values
between −1 and 1, values near zero can create problems with
the learning and optimization processes. A multilayer
feed−forward ANN was used for the training (Russel and
Norvig, 1995). A genetic algorithm was used to optimize
ANN topology (Goldberg, 1989, 1999). A non−standard
activation function called Elliot’s Proposed Activation
Function (Elliot, 1993) was used to obtain the final results.

The hyperspectral bands were ranked based on their
sensitivity to the ANN output value. A band with a high
sensitivity had a high rank. The ANN processed a subset of
the training data set. Every band input varied between 0.1 and
0.9 with a 0.05 increment for each band. After all the training
examples had been explored, the mean score for each band
was calculated. The rank of the best 60 bands based on the
mean range of predictions for an ANN of 120 bands was
retained for further examination. Similarly, the best 30 from
60, best 15 from 30, and the best 10 from 15 bands were
identified and retained. The ANN parameters for each set
included five nodes per hidden layer, one hidden layer, and
a learning rate of 0.02. The number of iterations was changed
with the number of input bands to compensate for the fact that
an ANN takes more time and learns more from data when
there are more bands per iteration. The iteration counts were
4000, 4000, 6000, 8000, 10000, and 12000 for 120, 60, 30,
15, 10, and 5 bands, respectively.

Method 5: Principal Component Analysis (PCA)
Multivariate  analysis using PCA was conducted on

120 bands of the image to obtain the most significant bands
characterizing spatial variability in a specific target charac-
teristics represented in the field data. The PCA transformed
the auto−correlated hyperspectral image bands to uncorre-
lated principal components based on the band covariance
matrix. A correlation analysis was performed between the

principal components or bands of the transformed image and
the ground truth data. The most significant bands were
identified from their corresponding eigenvectors in the
principal component that showed maximum correlation with
the field data. The eigenvalue represents the degree of
variance represented by each principal component. The
maximum variance in the image is carried by the first
principal component image, and the variance decreases for
higher−order principal components. Therefore, the first few
principal components are expected to represent the global
variability in the image scene, and the latter principal
components are expected to represent information on local
variability, such as the variability in the target characteristics
explored in this study.

RESULTS AND DISCUSSION
The results are grouped based on the underlying two

approaches to band selection (unsupervised and supervised).
Discussion on spectral signature extraction and hyperspectral
data compression is provided to illustrate benefits of band
selection methods in precision agriculture. Our goal was to
evaluate all methods based on the ground truth data collected
at a few spatial locations in the three experimental fields. We
selected subregions of the raw hyperspectral images corre-
sponding to the bounding boxes of ground truth measurement
points so that the results from all five methods for band
selection were comparable. In all presented results, the band
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Figure 4. Hyperspectral image of bare soil in field 1 (top) and its band en-
tropy measure (bottom) plotted as a function of the band wavelength for
field 1. Entropy is unitless. Larger entropy measures indicate high infor-
mation content.
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Table 3. Top 20 bands selected from hyperspectral image of bare soils by entropy, first derivative, and
second derivative measures. The image was collected on April 26, 2000, from field 1 and field 2.

Method 1: Entropy Method 2: First Derivative (F.D.) Method 3: Second Derivative (S.D.)

Field 1 Field 2 Field 1 Field 2 Field 1 Field 2

Band Entropy Band Entropy Band F.D. Band F.D. Band S.D. Band S.D.

741 2.939 741 2.83 741 10.37 744 8.72 741 18.92 741 16.80
828 2.695 828 2.66 738 8.071 741 8.08 744 10.02 738 7.57
825 2.681 825 2.64 669 2.915 672 2.34 738 7.729 744 7.29
822 2.678 822 2.64 747 2.397 750 1.77 669 4.613 669 3.84
795 2.674 813 2.64 666 1.571 795 1.63 672 3.573 747 3.20
807 2.668 795 2.63 498 1.547 669 1.50 747 3.098 672 2.74
804 2.667 816 2.63 639 1.535 642 1.47 699 2.665 639 2.25
819 2.665 819 2.63 792 1.498 747 1.43 642 2.533 642 2.24
813 2.663 807 2.63 699 1.348 501 1.37 501 2.370 699 2.22
810 2.661 810 2.62 696 1.247 699 1.29 639 2.350 501 2.02
816 2.654 669 2.62 750 1.013 804 1.14 498 2.188 498 1.88
669 2.651 804 2.61 801 0.928 753 1.02 795 1.782 795 1.63
798 2.650 798 2.61 642 0.913 702 0.94 510 1.683 801 1.62
792 2.632 792 2.59 510 0.830 639 0.78 702 1.600 666 1.25
801 2.628 801 2.59 507 0.821 645 0.77 507 1.476 510 1.24
789 2.622 789 2.58 711 0.777 792 0.66 801 1.461 696 1.16
786 2.615 780 2.57 501 0.742 504 0.65 750 1.420 507 1.15
783 2.608 774 2.57 636 0.726 714 0.63 666 1.379 714 1.04
771 2.607 639 2.57 789 0.653 510 0.62 696 1.253 702 1.04
768 2.605 783 2.56 504 0.635 513 0.61 714 1.129 804 1.00

Table 4. Top 20 bands selected by unsupervised methods 1 (entropy),
2 (first derivative), and 3 (second derivative) from hyperspectral

image of field 3 with partial crop coverage. The
image was collected on June 8, 2000.

Method 1 Method 2 Method 3

Band Entropy Band F.D. Band S.D.

669 2.31 744 1.54 744 1.68
663 2.31 822 0.70 741 1.25
666 2.30 756 0.62 819 0.94
660 2.30 795 0.58 822 0.78
657 2.29 813 0.53 777 0.74
672 2.29 777 0.53 750 0.73
654 2.29 768 0.46 756 0.65
651 2.27 717 0.45 699 0.64
648 2.27 690 0.43 762 0.61
675 2.27 699 0.38 753 0.60
639 2.25 681 0.36 747 0.57
678 2.25 804 0.34 816 0.56
645 2.25 693 0.34 702 0.49
681 2.24 798 0.33 780 0.44
642 2.24 816 0.32 768 0.40
684 2.23 684 0.32 519 0.37
630 2.22 765 0.32 810 0.35
633 2.22 504 0.31 516 0.34
636 2.22 522 0.30 714 0.34
627 2.20 480 0.28 717 0.34

index or band number from an interval [1,120] was converted
to the central wavelength (�b) of a given band (b) based on
equation 4:

( ) [ ]nmbb 13471 −×+=λ  (4)

UNSUPERVISED BAND SELECTION
The entropy of the soil image with no vegetative cover

showed highest values mostly in the near−infrared region of
780−828 nm (fig. 4 and table 3). Information entropy is a

measure based on the variance of DN within each band. In gen-
eral, near−infrared bands of soil images showed larger variabili-
ty within each bands. Considering that entropy measure is an
unsupervised method, the dominating target characteristic will
cause variability in spectral bands. We expected to see more
variability in color bands since clay characteristics and mineral
contents are expressed more in color bands than in NIR bands.
However, crop residue may be one reason for the strong band
variance in the NIR bands of a soil image. The partially vege-
tated image showed highest entropy values in the red region of
627−684 nm (table 4). These red bands signify plant pigment
absorption, mainly due to chlorophyll.

The first and second derivative measures compared the
spectral derivatives between adjacent bands to select wave-
bands. Derivative measures showed several significant bands in
the 690−705 nm range for both soil and partial canopy image.
The top 20 soil image bands from derivative measures also
included several bands in the 500−510 nm, 735−750 nm, and
800−805 nm ranges (fig. 5). The top 20 bands for partial canopy
image included 714−717 nm, 740−755 nm, 810− 825 nm, and
a few green bands (fig. 6). This means that there is significant
amount of information in the green, far red, red edge, and NIR
regions that is relevant to soil characteristics and canopy cover.
Visible light bands responded to soil characteristics very well.
Soil organic matter and residue may have contributed to the
variations in the NIR bands in soil images. Both color and NIR
bands responded well to partially vegetated image. These
results were consistent with theoretical expectations and
published research findings that NIR, far red, and red edge areas
of the electromagnetic spectrum carry valuable information on
crop and soil characteristics (Carter, 1998; Thenkabail et al.,
2002). The first and second derivative criteria compare only
adjacent bands for information redundancy. Although deriva-
tive measures are better than entropy measure for reducing
redundancy, they are probably not the best methods because
they compare only adjacent bands.
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Figure 5. Hyperspectral image of bare soil of field 2 (top) and the second derivative measure (bottom) used for identifying bands with non−redundant
information, plotted against band wavelength.
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Figure 6. Hyperspectral subimage of bare soil of field 3 (top) and the first
derivative measure (bottom) used for identifying bands with non−redun-
dant information plotted against band wavelength. Larger values for first
derivative measure (unitless) show that the two bands have non−redun-
dant information.

SUPERVISED BAND SELECTION
Artificial Neural Network (ANN)

The outcome of sensitivity analysis of bands with an ANN
model is shown in figure 7 as a mean prediction range against
the band wavelength. The band sensitivity differed signifi-
cantly among the bands, varying from 0 to 0.5. The spectral
bands at chlorophyll absorption and red shift showed the
maximum sensitivity (fig. 7). The top 20 bands selected by
ANN included one or more bands from NIR (740−750 nm),
red edge (710−740), green (530−550 nm), and several red
bands for the partial canopy image (table 5). In addition to the
above bands, several red and far red (690−710 m) bands were
highly significant in characterizing canopy. The NIR and red
regions are understandably more responsive to partially
vegetated fields because of the role of plant pigments in
attenuating visible light bands and of biomass (cell structure)
in attenuating NIR wavelengths.

The soil image showed a mixed set of individual narrow
bands from the visible and red edge regions. The red edge
(740−747 nm), green (540−546 nm), and scattered red bands
in the range of 640−675 nm were most sensitive to ECa
(table 5). The absence of chlorophyll absorption bands in the
far red of the soil image and the difference in the selected red
bands between the soil and canopy images are noteworthy
here. Soil clay particles, organic matter, residues, and
mineral content such as iron, calcium, and magnesium are
expected to generate a different response of soil to light
spectra than that of the canopy. The significant differences in
band sensitivity to soil ECa and canopy density provide
validity to the concept of signature bands, which are narrow
wavebands that are most responsive to a target characteristic.
Some of the adjacent bands showed similar responses, such
as bands in the 774−777 nm ranges for representing canopy
density and bands 741−747 nm range for representing soil
ECa, suggesting that broad bands in the respective range can
be substituted for individual narrow bands.
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Figure 7. Band sensitivity of hyperspectral image data estimated with a supervised neural network model, plotted against wavelength for a partially
vegetated field (field 3).

Principal Component Analysis (PCA)
The individual bands of a hyperspectral image are

spatially and spectrally correlated. PCA transforms the
image bands into orthogonal, and hence uncorrelated,
principal components. The hyperspectral images were trans-
formed using multivariate analysis into 15 principal compo-
nent bands, since higher−order principal components carried
very little information. Most of the variability in the images
was represented by the first ten principal components. The
first three to four principal components showed a gradual
trend in the contribution of individual bands represented by
their eigenvector (fig. 8a). However, in principal components
5 to 10, a few bands dominated in their contribution to each
principal component (fig. 8b).

During our investigation of principal components with
respect to ground truth data, different higher−order principal
components showed significant correlation to soil apparent
electrical conductivity and crop canopy. Each of the target
characteristics  showed varying degrees of correlation with
different principal components. Similarly, the band respon-
siveness to a particular geospatial characteristic varied from
field to field. For the bare soil image of field 1, principal
components 4, 5, and 7 showed the highest correlation with
the three measures of soil electrical conductivity (fig. 9).
VERIS deep showed maximum correlation of 0.39 with PC4,
EM showed maximum correlation of 0.49 with PC5, and
VERIS shallow showed a maximum correlation of 0.37 with
PC7. Based on the eigenvectors, the major contributors for
these three principal components were spectral bands in the

Table 5. Twenty most responsive wavelength bands obtained from supervised ANN training and PCA on field 2 image with EM data, and field 3
image with canopy density data. Sensitivity of individual bands to the neural net model is taken as the neural net measure. Eigenvector

of the principal component that is most correlated to the field variable is taken as the principal component measure. The
three measures of principal component are: eigenvectors of PC1, PC1+PC2, and average of the first ten PCs.

Neural Net Training Principal Component Analysis

Field 2 Field 3 Field 2 Field 3

Waveband Sensitivity Waveband Sensitivity Waveband Eigenvector
Waveband

PC1+PC2 / PC1 / avg(10)
Eigenvector
PC1+PC2

741 0.084 774 0.034 741 0.562 669 / 669 / 828 0.195
522 0.064 783 0.026 747 0.302 663 / 663 / 741 0.193
546 0.061 765 0.022 744 0.268 666 / 666 / 744 0.193
744 0.060 741 0.017 501 0.234 660 / 660 / 747 0.192
642 0.059 759 0.017 498 0.229 657 / 657 / 810 0.191
747 0.059 603 0.015 639 0.170 654 / 654 / 510 0.189
516 0.052 696 0.014 750 0.168 744 / 672 / 507 0.188
543 0.046 777 0.014 669 0.165 651 / 651 / 822 0.186
483 0.036 798 0.013 642 0.131 786 / 648 / 699 0.186
540 0.034 543 0.013 495 0.131 789 / 675 / 513 0.185
570 0.032 633 0.012 672 0.130 756 / 645 / 804 0.185
648 0.032 600 0.011 606 0.121 783 / 639 / 474 0.185
675 0.030 705 0.010 675 0.117 672 / 678 / 522 0.184
477 0.029 693 0.009 699 0.113 765 / 642 / 798 0.184
672 0.027 828 0.008 516 0.098 768 / 636 / 471 0.184
615 0.025 471 0.008 630 0.097 759 / 633 / 669 0.183
660 0.024 534 0.008 486 0.095 771 / 681 / 516 0.183
723 0.023 714 0.006 489 0.094 780 / 630 / 816 0.183
765 0.020 666 0.006 735 0.090 774 / 627 / 693 0.182
501 0.017 804 0.006 492 0.088 648 / 684 / 696 0.182
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Figure 8. Individual band contributions to each principal component (band eigenvectors) of field 2 image acquired on April 26, 2000: (a) principal com-
ponents 1 through 3, and (b) principal components 5 through 8.

range of 741−747 nm and 490−510 nm for PC7, 705−717 nm
and 669−672 nm for PC5, and 693−700 nm and 470−499 nm
for PC4 (fig. 7). The high correlation of ECa with lower−order
PCs such as 4, 5, and 7 shows that ECa was not the dominating
factor that determined the spatial variability in soil reflec-
tance. Although some of the surface factors such as soil mois-
ture, clay content, and mineral concentration that contribute
to ECa affect soil reflectance, ECa characteristics of deeper
layers may not affect soil reflectance. Similarly, other surface

factors such as crop residue may dominate soil reflectance
but may not affect ECa significantly.

Principal component analysis of the partially vegetated
scene in field 3 showed a very different trend from that of the
soil images (fig. 10). The first two PCs showed the highest
correlations (0.38 and 0.35) with canopy density. This can be
explained by the fact that the major variance factor in this
image is crop, rather than soil. In the soil image, the ECa only
partially contributed to the overall variability in soil reflec−
tance captured in the image. Subtle differences in scene re−
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Figure 9. Correlation between principal components and soil characteristics plotted against principal component bands derived from hyperspectral
images of bare soil in field 1.
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Figure 10. Correlation between principal components derived from hyperspectral image of partially vegetated field (field 3) and canopy density.

flectance are represented by higher−order PCs as opposed to
major differences in scene reflectance. Major contributing
wavebands to PC1 were from the red region of the spectrum
and to PC2 were from the near−infrared region of the spec-
trum (fig. 11). Since both PC1 and PC2 were highly corre-
lated to canopy density (fig. 10), and they represented two
equally significant regions of the spectrum, the sum of the ab-
solute values of PC1 and PC2 was considered as the best mea-
sure for selecting the top 20 bands.

COMPARISON OF BAND SELECTION METHODS

When the results from the five band selection methods
described in this article were compared to each other, the
wavebands in the 741−747 nm range became the most
significant bands for soil characterization, identified by four
out of the five methods (tables 3 to 5). Comparison of the
three unsupervised techniques on soil images of two fields
resulted in only two common bands (669 and 741 nm) in the
red and NIR regions. However, there were several bands that
were within ±3 nm between the three unsupervised methods
and the two fields. There were more common bands between
entropy and FD, and between FD and SD. The top 20 bands
corresponded very well in both fields under each measure.
Out of the 20 selected bands, 17 under entropy measure,
11 bands under first derivative, and 19 bands under second
derivative were common between the two fields.

The top 20 bands selected with the three unsupervised
methods on the field 3 image that had partial vegetative cover

showed no common band (table 4). There were 8 common
bands among the top 20 bands selected by the first and second
derivative methods. The lack of conformity between the
three measures lies in the way they work. Entropy measure
is similar to variance and follows band variance very closely
(fig. 12). Although entropy measure accounts for the infor-
mation content in bands, it fails to consider information re-
dundancy between different bands. Therefore, entropy may
not be adequate as a standalone method for band selection.
The first derivative measure looks at information redundancy
between the two adjacent bands, and it does not select the sec-
ond band if that band does not offer any new information.
Similarly, second derivative compares three adjacent bands
to select a band without redundancy. In the case of partially
vegetated field image, most of the image variance or infor-
mation content was in the red region (fig. 12). However, the
first and second derivatives reduce redundancy by eliminat-
ing an adjacent band that contains redundant information.

Principal component 5 was significantly correlated to EM
data in both fields 1 and 2. Therefore, the eigenvector of PC5
was considered as the principal component measure. Princi-
pal components 1 and 2 were most significant for characteriz-
ing crop canopy density; therefore, the average of
eigenvectors of PC1 and PC2 was considered as the principal
component measure for canopy density classification. The
bare soil image of field 2 resulted in eight common bands
among the top 20 bands selected based on principal compo-
nent measure and neural net measure. Top 20 bands selected
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wavebands.
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Figure 12. Entropy and variance of the 120 bands of field 3 image from June 8, 2000, plotted against the respective band wavelengths.

based on the PC1 measure showed only two bands in common
with that of neural net selection. The lack of conformity is
due to the difference in how PCA and ANN select bands. PCA
is based on the variance in image bands, whereas ANN se-
lects bands specifically on the sensitivity of a predictive mod-
el to each band. The PC measure of PC1+PC2 resulted in five
bands in common with the neural net measure. This is ex-
pected, as the PC1+PC2 measure represents more informa-
tion by accounting for the variance represented in two
principal components. Band selection based on the PC1 mea-
sure resulted in all red bands, whereas the PC1+PC2 measure
resulted in both red and NIR bands. A selection criterion
based on an average of the first ten PCs resulted in a more var-
ied selection from across all the spectral regions (table 3)
since this measure contained more information than the PC1
and PC1+PC2 measures.

The neural net selection had seven bands in common with
the PC measure based on average of first ten PCs. The
principal components are uncorrelated bands computed by a
linear combination of hyperspectral bands such that the
maximum variance is captured in the higher−order bands.
Theoretically, it is possible to capture the subtle variance
caused by a non−dominating target characteristic by this
method. However, band selection based on the eigenvectors
of one or more principal component does not have a
mechanism to eliminate redundant bands. The neural net
measure selected bands from all spectral regions. It is safe to
assume that neural net method of band selection leads to a
reduction in information redundancy since the sensitivity
analysis computes the additional information provided by a
given band by adding that band to the neural net model.

Comparison of the supervised to unsupervised methods of
band selection showed that there were no common bands
selected by all the methods, mainly because of the unique
technique by which each method selected bands. For field 3,
principal component measure based on the PC most corre-
lated to canopy density (PC1) resulted in exactly the same
results as entropy measure since both these measures are
based on band variance. Both entropy and PCA rely on the
variance in digital numbers within each band to calculate the
respective measure for information content. The principal
component measure based on average of the top ten PCs had
7 to 8 common bands with the first and second derivative

based selections. As standalone methods, both entropy and
PCA−based methods are unsuitable since they do not
consider data redundancy in bands. Additionally, PCA is
unreliable for temporal or multi−image comparisons since
the principal components change with scene illumination.
Two images of the same scene taken on the same day can
result in different principal components. If principal compo-
nents of multiple images need to be compared, then they
should first be calibrated with respect to one image. Similar
to PCA, entropy is only a measure of variance. If the target
characteristic  of interest is the dominant factor causing
variations in scene reflectance, then entropy will be an
adequate measure to estimate the information content
specific to the scene characteristic of interest. In many
precision agriculture applications, the scene characteristic of
interest causes only subtle difference in the pixel reflectance.
For example, soil fertility factors, specific crop stress in early
crop growth stage, etc., only contribute minimally to the total
scene reflectance. In such applications, both entropy and
principal component analysis are inadequate without specific
modifications.

The first and second derivatives and ANN methods try to
remove information redundancy to some extent while
selecting the most responsive bands. The ANN measure
resulted in only one common band with entropy and six each
with the first and second derivative for the soil image. For the
canopy image, the ANN shared two common bands with
entropy, four with the first derivative, and three with the
second derivative for the canopy image. In spite of the lack
of common specific bands, more than half of the bands
selected by the ANN measure were within a ±3 nm range of
bands selected by the first and second derivative methods.
Although the derivative methods were comparing the
redundancy in information between adjacent bands, it is
interesting to note that several of the adjacent bands had
enough pixel−to−pixel variability to be included in the top
20 bands. Spectral bands 714−717 nm, 741−753 nm, and
816−822 nm in the second derivative and bands 690−699 nm,
765−768 nm, and 795−798 nm in the first derivative are
examples of adjacent bands in the top 20 bands selected. The
neural net measure resulted in the least number of adjacent
bands in the top 20 bands. The three adjacent bands in the
741−747 nm range were selected by the first and second
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derivatives,  neural net, and PCA methods when applied to the
soil image. The presence of these adjacent bands in the top
20 bands implies that these three bands provide distinctly
different information useful for characterizing soils.
Compared to the neural net selection, the derivative methods
are flawed in their ability to compare information content
between bands that are distant from each other on the spectral
scale. However, derivative methods are useful in identifying
absorption spectra associated with water or plant pigments in
the scene. These absorption bands result in sharp changes in
the reflectance of the absorption bands with respect to
adjacent bands, resulting in peak values for the derivative
measure.

Theoretically, an ANN is capable of learning nonlinear
relationships between one or more independent variables
(target characteristics) and a corresponding dependent vari-
able (target reflectance). For a partially vegetated field
image, the ANN method identified several near−infrared
bands indicative of the plant cellular structure, chlorophyll
absorption spectrum (around 696 nm), the green peak
(543 nm), and a few wavelengths in the blue−green transi-
tional area representative of light absorption by carotenoids
and other plant pigments (table 5). As expected, the ANN
measure identified primarily red and green bands from the
soil image to map soil electrical conductivity. These bands
may indicate soil clay particles and minerals that significant-
ly influence soil electrical conductivity. For band selection
applications specific to target characteristics, the ANN
method may be the best. The ANN method is capable of
performing exhaustive searches in the entire application
domain and is the best among the five methods considered
here to avoid data redundancy issues. The drawback of ANN
analysis is that an exhaustive search procedure would require
supercomputers. Therefore, the time and cost associated with
exhaustive an ANN search could be a limiting factor in its
application.  The findings of our research will aid in plant
stress discrimination for precision agriculture, future hyper-
spectral sensor design, and crop management. As a next step,
we plan to continue our efforts to model specific target
characteristics  on bands selected with the five different
methods, and validate the performance of these models to
predict soil or plant characteristics that are important in
agriculture.

CONCLUSION
Five methods of band selection (three unsupervised and

two supervised) were compared for selecting signature bands
from hyperspectral imagery for characterizing soil ECa and
canopy density in agricultural fields. The best 20 bands
selected by the five methods varied between fields and
methods. The entropy measure selected bands primarily from
780−828 nm for bare soil and 627−684 nm for the canopy
image. Derivative measures selected bands from 500−
510 nm, 690−705 nm, 738−750 nm, 740−756 nm, and
800−805 nm for bare soil images. From the partially
vegetated images, the derivative measures selected bands
from 690−705 nm, 740−756 nm, and 810−825 nm. Top
20 bands selected by the ANN from the canopy image
included green bands (530−550 nm), chlorophyll absorption
spectra (690−710 nm), several red bands, and NIR bands
from 740−750 nm. For the soil images, the ANN selected a

different set of red bands than for the canopy image, green
(530−550 nm), and NIR (740−750 nm) bands. The PCA
selected 740−750 nm for both soil and canopy images. The
remaining bands selected by PCA included 690−710 nm and
several green bands for canopy characterization, and several
red bands for soil characterization.

There was some agreement between the derivative
measures and the ANN since both methods reduced redun-
dancy to some extend. The entropy measure and principal
component measure based on PC1 resulted in similar bands
since both of these methods were based on band variance.
The entropy measure can be adopted to select bands from
hyperspectral data that have the most information content for
characterizing  global variability within a scene. Similarly,
the principal component measure may be adopted to identify
bands with the most information content or information
specific to a field characteristic, as done in this study. Both
principal component and entropy measures were very similar
to each other in that they selected bands based on information
content within each band without considering information
redundancy. Therefore, these two methods, although ideal
for identifying bands with the most information content, are
not suitable for selecting a set of bands that will provide the
best characterization of a given target characteristic without
redundancy.

The first and second derivatives were reasonable mea-
sures for identifying redundancy or variability between
adjacent bands. The derivative measures could provide
reasonable accuracy in identifying absorption bands and
minimize redundancy between adjacent bands. However, the
derivative measures are unable to handle information
redundancy in wavebands that are more than one or two steps
away from a given band. Another caveat with derivative
measures is that they magnify noise in the data, if the data is
not filtered for noise.

Overall, the ANN has the capability to learn the subtle
changes in scene reflectance caused by a specific scene
characteristic  in spite of large variations in the total scene
reflectance.  The ANN measure based on band sensitivity
compared the information added by a single band in a model
to characterize a specific target variable. Therefore, the ANN
measure is capable reducing information redundancy be-
tween the selected bands. In addition to identifying the most
responsive bands, the ANN measure can also be used for
application−specific data compression.

With the exception of the entropy measure, all methods
selected several bands from the 740−750 nm range among the
top 20 from all three field images, and 690−710 from the
partially vegetated image of field 3. Therefore, we recom-
mend that future sensor designs for agriculture and environ-
mental applications may include narrow wavebands (10 nm
or less) in these two regions. This study also showed that it
would be possible to capture the target−specific information
provided by the top 20 bands with fewer bands, such as nine
bands in the case of the principal component measure in
field 2. This is possible by combining some of the adjacent
bands that were among the top 20 into single broader bands.
Therefore, these band selection methods are quite useful for
considerably reducing data volume and dimensionality.
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