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This paper overviews DNA microarray grid alignment and foreground separation approaches. Microarray grid alignment and
foreground separation are the basic processing steps of DNA microarray images that affect the quality of gene expression informa-
tion, and hence impact our confidence in any data-derived biological conclusions. Thus, understanding microarray data processing
steps becomes critical for performing optimal microarray data analysis. In the past, the grid alignment and foreground separation
steps have not been covered extensively in the survey literature. We present several classifications of existing algorithms, and de-
scribe the fundamental principles of these algorithms. Challenges related to automation and reliability of processed image data are
outlined at the end of this overview paper.
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1. INTRODUCTION

The discovery of microarray technology in 1995 has opened
new avenues for investigating gene expressions [1] and in-
troduced new information problems [2, 3]. Researchers have
developed several microarray data processing methods and
modeling techniques that are specific to DNA microarray
analysis [4] and with the objective to draw biologically mean-
ingful conclusions [5–8]. However, the analysis of DNA mi-
croarray data consists of several processing steps [9] that can
significantly deteriorate the quality of gene expression in-
formation, and hence lower our confidence in any derived
research result. Thus, understanding microarray data pro-
cessing steps [10] becomes critical for performing optimal
microarray data analysis and deriving biologically meaning-
ful conclusions. We present a simple workflow of microarray
data processing steps in Figure 1 to motivate our overview.

The workflow in Figure 1 starts with raw image data ac-
quired with laser scanners and ends with the results of data
mining that have to be interpreted by biologists. The mi-
croarray data processing workflow includes issues related
to (1) data management (e.g., MIAME compliant database
[11]), (2) image processing (grid alignment, foreground sep-
aration, spot quality assessment, data quantification and nor-
malization [12, 13]), (3) data analysis (identification of dif-
ferentially expressed genes [14], data mining [15, 16], inte-
gration with other knowledge sources [17, 18], and quality
and repeatability assessments of results [19]), and (4) biolog-
ical interpretation (visualization [20]). The objective of this

paper is to overview only DNA microarray grid alignment
and foreground separation approaches. These two particu-
lar microarray processing steps have not been covered exten-
sively in the past (see [5, 6, 12, 15]). In addition, the full cov-
erage of all microarray data processing issues in sufficient de-
tails would not be permissible in a survey journal paper due
to a page limit. The reader is referred to books for less recent
but broader coverage of microarray processing steps [12].

Before presenting DNA microarray grid alignment and
foreground separation approaches, we introduce the term
“ideal” DNA microarray image in terms of its image con-
tent. The image content would be characterized by constant
grid geometry, known background intensity with zero un-
certainty, infinite spatial resolution, predefined spot shape
(morphology), and constant spot intensity that (a) is differ-
ent from the background, (b) is directly proportional to the
biological phenomenon (up- or down-regulation), and (c)
has zero uncertainty for all spots. For multichannel microar-
ray images, the same characteristics of an ideal image apply
to each image channel and the channels are perfectly aligned.
One microarray image can also contain multiple subgrids.
Figure 2 shows an example of such an ideal microarray im-
age. While finding such an ideal cDNA image is probably a
pure utopia, it is a good starting point for understanding im-
age variations and possibly simulating them [21]. One can
view the overview of multiple grid alignment and foreground
separation approaches as a set of techniques that try to com-
pensate for deviations from the “ideal” microarray image
model.
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Figure 1: Microarray data processing workflow.

One could also mention that the grid alignment and fore-
ground separation steps in cDNA processing do not occur
in processing of oligonucleotide arrays, such the Affymetrix
GeneChip (http://www.affymetrix.com). Oligonucleotide ar-
rays contain only foreground and therefore the extracted de-
scriptors represent absolute gene expression level. From an
image processing viewpoint, the Affymetrix chips are easier
to process since there is no background and the spot shape
is rectangular. However, cDNA arrays are appropriate for de-
tecting long DNA sequences while oligonucleotide arrays are
designed for detecting only a short DNA sequence. Further-
more, the Affymetrix technology has been much more ex-
pensive than the technology with coated glass slides.

We present an overview of grid alignment techniques in
Section 2, foreground separation methods in Section 3, and
conclude our paper in Section 4. First, grid alignment meth-
ods are overviewed in terms of (1) automation as manual,
semiautomated and fully automated, and (2) their underly-
ing image analysis approaches as template-based and data-
driven. Data-driven grid alignment algorithms are decom-
posed into (a) finding grid lines, (b) processing multiple
channels, (c) estimating grid rotation, and (d) finding multi-
ple grids. Next, foreground separation methods are described
as those using (1) spatial templates, (2) intensity-based clus-
tering, (3) intensity-based segmentation, and (4) spatial and
intensity information.

2. GRID ALIGNMENT METHODS

A grid alignment (also known as addressing or spot find-
ing [22] or gridding [23]) is one of the processing steps in
microarray image analysis that registers a set of unevenly
spaced, parallel, and perpendicular lines (a template) with
the image content representing a two-dimensional (2D) ar-
ray of spots [24]. The registration objective of the grid align-
ment step is to find all template descriptors. The template de-
scriptors include line end point coordinates, so that pairs of
perpendicular lines intersect at the center locations of a 2D
array of spots in a microarray scan. Furthermore, this step
has to identify any number of distinct grids of spots in one
image.
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Figure 2: 2D illustration of an “ideal” microarray image (a) with
constant shape, horizontal and vertical spacing parameters, and in-
tensity profile. 3D visualization of the red (b) and green (c) chan-
nels. Both channels are characterized by the same parameters and
are perfectly aligned.

http://www.affymetrix.com
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There are two views on microarray grid alignment. First,
grid alignment methods could be viewed in terms of automa-
tion as manual, semiautomated, and fully automated [15,
Chapter 3], [25], [12, Chapter 6]. Second, grid alignment
techniques could be viewed in terms of their underlying im-
age analysis approaches as template-based and data-driven
[24].

2.1. Automation level of grid alignment methods

Manual grid alignment methods

Given the fact that one expects a spot geometry to be very
similar to a grid (or a set of subgrids), a manual alignment
method is based on a grid template of spots. A user specifies
dimensions of a grid template and a radius of each spot to
form a template. Computer user interfaces like a computer
mouse are available for adjusting the predefined grid tem-
plate to match the microarray spot layout.

To compensate for many microarray image variations,
one could possibly obtain “perfect” grid alignment assum-
ing that human-computer interface (HCI) software tools are
built for adjusting shape and location of each spot individ-
ually. It is apparent that this approach for grid alignment is
not only very time consuming and tedious, but also almost
impossible to repeat or use for high-throughput microarray
image analysis.

Semiautomated grid alignment methods

In general, there are some parts of grid alignment that can be
reliably executed by computers, but other parts are depen-
dent on user’s input. One example would be a manual grid
initialization (selection of corner spots, specification of grid
dimensions), followed by automated search for grid lines and
grid spots [23]. The automated component can be executed
by using either a grid template that is matched to the image
content with image correlation techniques, or a data-driven
technique that assumes intensity homogeneous background
and heterogeneous foreground. The benefits of semiauto-
mated grid alignment methods include reductions of human
labor and time, and an increase of processing repeatability.
Nevertheless, these methods might not suffice to meet the
requirements of high-throughput microarray image process-
ing.

Fully automated grid alignment methods

These methods should reliably identify all spots without any
human intervention based on one-time human setup. The
one-time setup is for incorporating any prior knowledge
about an image microarray layout into the grid alignment
algorithms in order to reduce their parameter search space.
Many times, the challenge of designing fully automated grid
methods is to identify all parameters that represent prior
knowledge and quantify constraints for those parameters.
Typically, these methods are data-driven and have to opti-
mize internally multiple algorithmic parameters in their pa-
rameter search space to compensate for all previously de-
scribed microarray image variations.

While it is everyone’s ultimate goal to design fully auto-
mated grid alignment methods, one has to understand that
these methods depend entirely on data content. For example,
if there is a missing line of spots (spot color is indistinguish-
able from background), then an algorithm would not be able
to find any supporting evidence for a grid line. One approach
to this problem is the assignment of algorithmic confidence
scores to each found grid. Grids with low confidence can be
set aside for further human inspection whereas the grids with
high algorithmic confidence can be processed without any
human intervention. Another approach is to build into a mi-
croarray image some fiduciary spots that could guide image
processing and provide a self-correction mechanism.

Finally, the question arises how much accuracy one can
gain by automating alignment, and under what image vari-
ability conditions. This is an open research topic that requires
a user study to quantify the accuracy, computational require-
ments, and consistency of alignment results. The user studies
should also include the links between automation and the
variations in cDNA microarray images.

2.2. Image analysis approaches to grid alignment

2.2.1. Template-based approaches

The template-based approach is the most prevalent in the
previous literature and existing software packages, for exam-
ple, GenePix Pro by Axon Instruments [26], ScanAlyze [27],
or GridOnArray by Scanalytics [28]. Most of the currently
available software packages enable manual template match-
ing [26] (GenePix), [27] (ScanAlyze), [29] (Dapple), [30]
(ImageGene). The procedure for manual template-based
matching can be described as follows. Define the template by
specifying number of subgrids, number of spots along rows
and columns of a microarray image, spot diameter and spot
spacing along rows and columns. Then adjust template loca-
tion and all the above parameters to match the spots in a mi-
croarray image of interest. The quality of a match is assessed
visually by maximizing the inclusion of spot pixels inside of
one of the spots forming a template.

Some software products already incorporate an auto-
matic template location adjustment (also called refinement)
by searching for the best match between a fixed template and
the microarray data [26] (GenePix), [31] (QuantArray), [32]
(Array Vision). The refinement is executed by maximizing
correlation of (1) an image template formed based on user’s
inputs and (2) the processed microarray image over a set
of possible template placements (e.g., translated and rotated
from the user defined initial position). If the parameters of
the template become one part of the refinement search, then
the approach is referred to as refinement with deformable
templates. For example, it is possible to employ refinement
with deformable templates based on Bayesian grid matching
[33] to achieve certain data-driven flexibility into grid align-
ment.

The template-based approach is viewed as appropriate
if the measured grid geometry does not deviate too much
from the expected grid model as defined by a template [28].
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Figure 3: Template-based alignment results obtained by visually
aligning the left two columns (a) or the right two columns (b) of
microarray spots.

If measured spot grids are unpredictably irregular, then this
approach leads to (a) inaccurate results or (b) unacceptable
costs for creating grid templates that would be custom-tuned
to each batch of observed grid geometries. An example of
alignment inaccuracies is shown in Figure 3. In this figure,
the middle columns of spots have different spacing than the
left two and the right two columns. A single template with a
fixed spacing between columns leads to alignment errors il-
lustrated in Figure 3. To increase accuracy of alignment, one
would have to introduce multiple templates at the cost of
larger number of parameters to adjust.

2.2.2. Data-driven approaches

There are several components of data-driven algorithms and
each component solves one part of the grid alignment puz-
zle. We overview basic components of data-driven grid align-
ment algorithms that involve (1) finding grid lines, (2) pro-
cessing multiple channels, (3) estimating grid rotation, and
(4) finding multiple grids. We also present the algorithmic
issues related to (1) tradeoffs between speed and accuracy,
(2) repeatability and parameter optimization, and (3) incor-
porating prior knowledge about grids.

Finding grid lines

The first “core” component that finds grid lines is (a) based
on statistical analysis of 1D image projections [34–37], or (b)
used as part of image segmentation algorithms [38–40]. The
algorithmic approach based on 1D image projections con-
sists of the following steps [24, 37]. First, a summation of
all intensities over a set of adjacent lines (rows or columns)
is computed and denoted as a projection vector. Second, lo-
cal extremes (maxima for bright foreground or minima for
dark foreground) are detected within the projection vectors.
These local extremes represent an approximation of spot cen-
ters. The tacit assumption is that the sought lines intersect a
large number of high-contrast and low-contrast areas in con-
trary to the background that is assumed to be intensity ho-
mogeneous with some superimposed additive noise. Third,
a set of lines is determined from the local extremes by in-
corporating input parameters (e.g., number of lines) and by
finding consistency in spacing of local extremes. Fourth, all

intersections of perpendicular lines are calculated to estimate
spot locations. The input microarray intensities can be pre-
processed to remove dark-bright schema dependency (e.g.,
by edge detection [24]), or to enhance contrast of spots (e.g.,
by matched filtering or spot amplification [22]). Figure 4
illustrates 1D projections derived from a preprocessed im-
age by Sobel edge detection algorithm [41]. After prepro-
cessing the input image (Figure 4(a)), projection vectors are
formed by summing adjacent rows (Figure 4(b)) or columns
(Figure 4(c)). The graphs in Figures 4(a) and 4(b) show the
dependency of the projection vector on the row or column
location. The minima in these graphs refer to the locations
with the smallest intensity change (in between spots) while
the maxima refer to the locations with the maximum inten-
sity change (across spots).

The other algorithmic approaches to finding grid lines
that are based on image segmentation use primarily mor-
phological processing [40, 42, 43] or Markov random field
(MRF) models [38, 39, 44, 45] or graph models [25, 46].
In [40], adaptive thresholding and morphological processing
steps are used to detect guide spots. The guide spots are de-
fined as the locations of good quality spots (circular in shape,
of appropriate size and intensity consistently higher than the
background), for instance, the spots in Figure 5. With the
help of guide spots and given the information about microar-
ray layout, the final grid can be estimated automatically. The
drawback of this approach is the assumptions about the ex-
istence of guide spots and the absence of spurious “spots”
due to contamination. Another MRF segmentation-based
approach reported in [38, 39] uses region growing segmenta-
tion to obtain partial grids that are then evaluated by grid hy-
pothesis testing. The grid alignment problem is formulated
as an MRF labeling problem, where subgrids are defined as
sites, and placement hypotheses for the subgrids are labels.
Finally, the graph-based grid alignment represents spots as
ε-graphs, with “up,” “down,” “left,” and “right” edges [46]. A
block of spots is formed when neighboring vertices of edges
are identified with ε-similar edge lengths.

Processing multiple channels

Given multichannel microarray images, the second compo-
nent of data-driven methods tackles usually the problem
of fusing image channels (also called bands). During mul-
tichannel microarray data acquisition, each channel is ac-
quired at a different time and hence spatial misalignment
of image channels might occur. Thus, this aspect of chan-
nel fusion requires cross-channel alignment (registration)
that is usually approached by standard registration tech-
niques.

Next, due to the different image content of each chan-
nel (bright and dark spots, as well as background variations
per channel), grid alignment is dependent on an image chan-
nel. The fusion problem has to bring together either input
channels for grid alignment or the results of grid alignment
obtained for each channel separately. This aspect of chan-
nel fusion can be approached by performing a Boolean op-
eration on all channels [24] or by linear combination of all
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Figure 4: A microarray image (a) and its 1D projection scores
(modified summations) derived from the original image after pre-
processing by Sobel edge detection. 1D projections along rows (b)
and along columns (c).

channels weighted by the median values [23]. For instance,
multiple channels could be fused by performing (channel1
OR channel2 OR channel3 OR . . . ) at a pixel level, as illus-
trated in Figure 6 for two channels. The fusion of all channels
with a Boolean OR operator will propagate foreground and
background intensity variations into the grid alignment algo-
rithm and increase its robustness assuming that there is little
spurious variation in the background. The option of fusing
channels beforehand reduces multichannel computation and
avoids the problem of merging multiple grids detected per
each channel.

Figure 5: An example of guide spots as used in [40] for grid align-
ment.

(a) (b)

(c)

Figure 6: Illustration of processing multiple channels. Microarray
images of red (a) and green (b) channels that are fused by Boolean
OR function before further processing (c).

Estimating grid rotation

The third component of data-driven methods addresses the
problem of grid rotation. This problem occurs due to the
fact that the coordinate system of the robot printing the ar-
ray may be slightly rotated with respect to the microarray
image coordinate system [39]. One approach to this prob-
lem is an exhaustive search of all expected rotational angles
[24]. This approach is motivated by the fact that the range of
grid rotations is quite small, and therefore the search space is
small. An initial angular estimate can be made by analyzing
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Figure 7: An example result of processing the original image (a)
with the proposed algorithm and analyzing discontinuities in line
spacing (b) to partition the original image into subimages contain-
ing one subarray per subimage.

four edges of a 2D array [37]. The disadvantage of this ap-
proach is that small angle image rotations introduce pixel
distortions because rotated pixels with new noninteger lo-
cations are rounded to the closest integer location (row and
column). Another approach to the grid rotation problem is
the use of discrete Radon transformation [22]. In this case,
the grid rotation angle is estimated by (a) performing pro-
jections in multiple directions (Radon transformation) and
(b) selecting the maximum median projection value. While
Radon transformation is computationally expensive, a sig-
nificant speedup can be achieved by successive refinement of
angular increments and limiting the range of angular rota-
tions.

Finding multiple subgrids

Many times DNA microarray images contain multiple dis-
tinct 2D subarrays of spots (subgrids). The subgrids are sep-
arated by background and the subgrid edge-to-edge distance
is larger than the intra-spot distances within each subgrid.
The number of expected distinct subgrids can be defined by
the number of subgrids along horizontal (row) and vertical
(column) axes since distinct subgrids are also arranged in
a 2D array format. The numbers of subgrids can be speci-
fied as input parameters since they are considered as part of
our prior knowledge about microarray slides. Given the in-
put parameters, the task is still to find image subareas that
contain individual subgrids and then localize all spots in the
subgrids. Due to the regular arrangement of printed subgrids
and the approximate alignment of sub-grid edges with the
image borders, one approach is to partition the original im-
ages into rectangular subareas based on the input parameters
and then process each subarea separately.

If the input parameters are not available, then the prob-
lem can be approached by treating the entire image as one
grid, searching for all irregular lines in the entire image, and
then analyzing the spacing of all found mutually perpendicu-
lar grid lines [24]. Every large discontinuity in the line spac-
ing will indicate the end of one and beginning of another
sub-grid (2D arrays of spots). An example result is shown in
Figure 7.

Speed and accuracy tradeoffs

Another optional component of data-driven methods could
incorporate the speed and accuracy tradeoffs by image down-
sampling option. It is well known that the speed of most
image-processing algorithms is linearly proportional to the
number of pixels since every pixel has to be accessed at least
once and processed in some way. To illustrate the processing
requirements, let us consider two microarray images (image1
and image2) of the same pixel size and with the same con-
tent (intensity statistics per spot). Image1 and image2 con-
tain N ×M spots of radii R1 and R2, respectively, such that
R1 < R2. The grid alignment processing of image2 could be
performed faster without any loss of accuracy with respect to
the alignment processing performed on image1 if image2 is
subsampled by a factor of R1/R2. From this follows that the
tradeoff between (a) speed (correlated with computational
requirements) and (b) grid alignment accuracy is also a func-
tion of spot size (or radius R). In practice, downsampling (or
local averaging) is preferred instead of subsampling in order
to preserve local spot information that could be completely
eliminated by subsampling.

Repeatability and parameter optimization

In order to introduce fully automated methods and hence
microarray image processing repeatability, it is necessary to
address the issue of algorithmic parameter optimization. The
first part of this task is to discriminate one-time setup pa-
rameters, for example, number of grids or number of lines,
from the data-dependent parameters, for example, size of
spatial filters or noise thresholds. Next, it is beneficial to limit
the ranges of parameters to be optimized by specifying their
lower and upper bounds, for example, grid angular rotation.
This step reduces any unnecessary computation cost during
optimization. Finally, an optimization strategy has to be de-
vised so that a global optimum rather than a local parameter
optimum is found for a given “optimality” metric.

While the benefit of parameter optimization is a fully au-
tomated grid alignment tool, the drawback of optimization
is the need for more computation and hence slower execu-
tion speed. From a system performance viewpoint, it is desir-
able to create optional user-driven inputs for algorithmic pa-
rameters in order to incorporate any prior knowledge about
microarray image layout. Users that do not specify any mi-
croarray layout information will use more computational re-
sources than users that partly describe input data. Nonethe-
less, the availability of optional algorithmic inputs and em-
bedded parameter optimization techniques lets end users de-
cide between the two application extremes, such as real-time
performance with limited computational resources and of-
fline processing with supercomputing resources.

Incorporating prior knowledge about grids

The most common prior knowledge about microarray layout
includes number of grids (along rows and along columns),
number of lines per grid, and perhaps spot radius. Other
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inputs about corner spot locations, line spacing, grid rota-
tion, or background characteristics should be easily incor-
porated into grid alignment algorithms. It is also possible
that an irregularly spaced grid as detected by a data-driven
method should be overruled by a strict regularity require-
ment on the final grid. For example, due to our prior knowl-
edge about printing, the requirement to generate a grid with
equally spaced rows could be incorporated into the final grid
by (a) computing a histogram of distances between adjacent
already detected rows, and (b) selecting the most frequent
distance as the most likely correct row spacing [24]. One can
then choose the row with the highest algorithmic confidence
(score) as the initial location and place the final grid accord-
ing to the regularity constraint.

The data-driven approaches are capable of finding irreg-
ular grids but are prone to misalignment due to spurious or
missing spots. They are also dependent on many parameters.
One can achieve significant cost savings with data-driven ap-
proaches when the majority of microarray slides meets cer-
tain quality standards and a fully automated algorithm flags
images that are beyond its reliable processing capability.

3. FOREGROUND SEPARATION METHODS

The outcome of grid alignment is an approximation of spot
locations. A spot location is usually defined as a rectangular
image area enclosing one spot (also denoted as a grid cell).
The next task is to identify pixels that belong to foreground
(signal) of expected spot shape and to background. We refer
to this task as foreground separation and it involves image
segmentation and clustering.

The term image segmentation is associated with the
problem of partitioning an image into spatially contiguous
regions with similar properties (e.g., color or texture), while
the term image clustering refers to the problem of parti-
tioning an image into sets of pixels with similar properties
(e.g., intensity, color, or texture) but not necessarily con-
nected. The objective of segmentation inside of a grid cell
is to find one segment that contains the foreground informa-
tion. If a spot could be formed by a set of noncontiguous re-
gions/pixels, then image clustering can be applied. While mi-
croarray image segmentation and clustering problems result
in grouping pixels based on intensity similarities, it is quite
frequent to use a spatial template-based separation, where
the template follows a spot shape model. We should also
mention foreground separation methods that assign fore-
ground and background labels to pixels based on both in-
tensities and locations.

We describe next the foreground separation methods us-
ing (1) spatial templates, (2) intensity-based clustering, (3)
intensity-based segmentation, and (4) spatial and intensity
information. We also address the issue of foreground separa-
tion from multichannel microarray images.

3.1. Foreground separation using spatial templates

This type of signal separation assumes that a spot is centered
inside of a grid cell and it closely matches the expected spot

morphology. The spatial template consists typically of two
concentric circles, where the pixels inside of the smaller cir-
cle are labeled as foreground (signal) and the pixels outside
of the larger circle are labeled as background (see Figure 8).
All pixels in between of the two concentric circles are viewed
as transition pixels and are not used. Clearly, this type of
foreground separation will fail for spots with varying radii
or spatial offsets from the grid cell center, and will include
all pixels with artifacts (e.g., dust particles, scratches, or spot
contaminants). The consequence of poor signal separation
will lead to artificially increased background level and dis-
torted signal-to-background ratio. A quantitative compari-
son of the results obtained from circular spots and segmented
spots can be found in [36].

3.2. Foreground separation using
intensity-based clustering

This type of signal separation boils down to a two-class im-
age clustering problem (or image thresholding) [37]. Image
thresholding is executed by choosing a threshold intensity
value and assigning the signal label to all pixels that are above
the threshold value (or below depending on a microarray im-
age dark-bright scheme). The threshold value can be chosen
by computing the expected percentage of spot pixels inside
of a grid cell based on the knowledge about image resolution
and spot radius. The thresholding approach can be viewed
as clustering by determining a cluster separation boundary.
Other clustering approaches use cluster intensity representa-
tives, for instance, K-means or K-medoids [16], and the simi-
larity between any intensity and the particular representative
in order to assign pixel label (cluster membership). These
methods can also be applied to the foreground separation
problem [47].

Figure 9 shows examples of accurate and inaccurate fore-
ground separation. In this example, we used an advanced
K-means clustering algorithm [34] that iteratively reassigns
foreground and background pixel labels until the cluster’s
centroid intensities do not change significantly.

3.3. Foreground separation using
intensity-based segmentation

There are many segmentation methods available in the image
processing literature [41, Chapter 6]. We will describe only
those that have been frequently used with microarray images,
such as seeded region growing, watershed segmentation, and
active contour models.

Seeded region growing segmentation starts with a set
of input pixel locations (seeds) [23, 35]. The segmentation
method groups simultaneously pixels of similar intensities
with the seeds to form a set of contiguous pixels (regions).
The grouping is executed incrementally for a decreasing sim-
ilarity threshold. The segmentation is completed when all
pixels have been assigned to one of the regions grown from
the initial seeds. In the case of microarray images, the fore-
ground seed could be chosen either as the center location of a
grid cell or as the maximum intensity pixel inside a grid cell.
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Figure 8: Illustration of a grid cell and the separation using spatial
concentric circular templates.

(a) (b)

(c) (d)

Figure 9: Examples of accurate ((a) original image, and (b) la-
bel image) and inaccurate ((c) original image, (d) label image)
foreground separation using intensity-based clustering. The results
were obtained using the Isodata (advanced K-means) algorithm
[34].

Similarly, the background seed could be selected either as the
middle point between two spots or as the minimum intensity
pixel inside a grid cell.

Morphological segmentation by watershed transforma-
tion is based on image operators derived from mathematical
morphology [42]. There are two basic operators, dilation and
erosion, and two composite operators, opening and closing.
These operators are frequently used for filtering light or dark
image structures according to a predefined size and shape. In
the case of microarray images, morphological operators can
filter out structures that deviate too much from the expected
shape and size of a spot. Segmentation by watershed trans-
formation can be viewed as the analysis of a grid cell inten-
sity relief consisting of (a) no peak (missing spot), (b) one
peak (clear spot), and (c) multiple peaks (vague spot). The
case of multiple peaks is treated by searching for peak sep-
aration boundaries with the morphological operators that

(a) (b)

(c)

Figure 10: An example of pros and cons of foreground separation
using intensity-based clustering and segmentation: (a) original im-
age; (b) segmentation result; and (c) clustering result. The results
were obtained using the Isodata (advanced K-means) [48] and re-
gion growing algorithms [34].

mimic watersheds (flooding image areas below peaks). The
outcome of the segmentation step is the region that corre-
sponds to the most likely spots according to the morpholog-
ical analysis of grid cell image intensities.

Active contour [39] and multiple snake [13] models start
with an initial contour model and by deforming it the objec-
tive is to minimize some predefined energy functional. The
initial contour is usually represented by a polygon in a digital
domain. The energy functional is composed of several global
and local constraints on the contour deformation (e.g., in-
dividual, group, and constraint energy as in [13], or spring
chain constraints as in [39]). Some preprocessing is usually
necessary to address the problems with touching spots, large
spot size variation, and convergence of greedy algorithms to
local minima.

The main difference between foreground separation us-
ing clustering and using segmentation is illustrated in Figure
10. If a spot segment (region) is correctly identified, then
the segmentation approach will exclude dark pixels from the
foreground assuming that they are surrounded by a con-
nected set of pixels. In contrary, the clustering approach will
include to the foreground cluster pixels that belong to the
background or the intensity transitioning area. These pros
and cons can be seen in the middle and right images in Figure
10.

Another issue to consider while choosing the most ap-
propriate foreground separation technique is the priority or-
der for selecting correct foreground pixels. There are certain
grid cells where multiple interpretations are plausible as il-
lustrated in Figure 11. If two segments of approximately the
same size are detected inside of a grid cell (see Figure 11),
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(a) (b)

(c)

Figure 11: Multiple interpretations of the original grid cell im-
age (a). The interpretation can vary based on prior region inten-
sity and/or location and/or morphology information: (b) two dis-
tinct foreground clusters characterized by similar intensities; (c) one
foreground contiguous region.

then should we select (a) the brighter segment, (b) the seg-
ment with less irregular shape, or (c) the segment closer to
the grid center? If a scratched spot consisting of two half disks
is considered as a valid spot, then should we include into
foreground all segments of the same intensity that are close
or connected to the main segment positioned over the grid
center? These decisions require ordering priorities in terms
of expected region intensity, location, and spot morphology.

3.4. Foreground separation using spatial and intensity
information (hybrid methods)

Several foreground separation methods try to integrate the
prior knowledge about spot morphology (spatial template),
spot location, and expected intensity distribution. These
methods could be viewed as a sequence of steps consisting of
segmentation or clustering image partitions, spatial template
image partitions, statistical testing, and foreground/back-
ground trimming.

Spatially constrained segmentation and clustering

For instance, foreground separation using segmentation
leads to a connected region that is fitted to a spatial template
[40]. If the best-fitted circle deviates too much from the tem-
plate, then the spot is labeled as invalid. It is also possible to
apply repeatedly clustering and mask matching [49] by which
intensity and shape features are integrated. Another example

would be foreground separation using clustering with ad-
ditional minimization constraint on cluster dispersion [47].
The particular choice of clustering could be the partitioning
method based on K = 2 medoids (PAM) with Manhattan
distance as the similarity metric. This method in [47] was re-
ported to be robust to the presence of noise in microarray
images.

Mann-Whitney statistical testing

This foreground separation algorithm is executed by ran-
domly selecting N pixels from the background and N pix-
els with the lowest intensities from the foreground over an
expected spatial template of a spot [50]. Next, the two sets
of pixels are compared according to the Mann-Whitney test
[51, Test 12] with critical values of 0.05 or 0.01. The Mann-
Whitney nonparametric test is a technique designed for eval-
uating a hypothesis whether or not two independent sam-
ples represent two populations with different median values.
Iteratively, the darkest foreground pixels are replaced with
those pixels that have not yet been chosen, and evaluated
until the Mann-Whitney test satisfies the statistical signifi-
cance criteria. The foreground separation is then achieved
by selecting all pixels with higher intensities than the back-
ground pixels that passed the statistical significance test. It is
apparent that this method relies on good selections of back-
ground pixels but incorporates our prior knowledge about
spot template and expected intensity distributions. Unfor-
tunately, this method cannot detect the presence of artifacts
that bias the foreground separation results.

The results of this statistical method are dependent on
the number of available samples within a grid cell and hence
image resolution. A high statistical confidence in microarray
measurements would be obtained from a digital image with
very high spatial resolution (very large number of pixels per
grid cell). However, the cost of experiments, the limitations
of laser scanners in terms of image resolution, storage limita-
tions, and other specimen preparation issues are real-world
constraints that have to be taken into account. Thus, the re-
sults of this method, as well as many other statistical meth-
ods [51], are always reported with the number of foreground
and background pixels that defines the statistical confidence
of the derived results.

Spatial and intensity trimming

This approach is based on analyzing intensity distributions
of foreground and background pixels as defined by a spa-
tial template and then discarding those pixels that are clas-
sified as distribution outliers [15, Chapter 3]. Spatial trim-
ming is achieved by initial foreground and background as-
signments over a spot template while intensity trimming is
accomplished by removing pixels with intensity outliers with
respect to foreground and background intensity distribu-
tions. The goal of spatial and intensity trimming is to remove
(a) contamination pixels (e.g., dust or dirt) in foreground
and background regions, and (b) artifact pixels (e.g., dough-
nut spot shape) in foreground region. Figure 12 illustrates
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(a) (b)

Figure 12: A couple of grid cell examples where contamination pix-
els (the very bright pixels) have to be trimmed.

a couple of examples where contamination pixels would skew
the resulting gene expressions if they would not be trimmed
off.

The trimming approach is similar to Mann-Whitney sta-
tistical testing but the statistical testing of the trimming
method is applied to foreground and background pixels (in-
tensity distribution analysis) instead of only to background
pixels in the case of Mann-Whitney statistical testing. The
spatial trimming can be improved by using two concentric
circles that define foreground, background, and transient
pixels. The transient pixels are eliminated from the analysis
since they are not reliable. During intensity trimming, the
choice of intensity threshold values that divide distribution
outliers from other intensities depends on a user and the val-
ues are related to a statistical confidence. Empirically, a good
performance is obtained when the threshold values eliminate
approximately 5–10% of each, foreground and background,
cumulative distributions [15, Chapter 3]. However, this ap-
proach should not be used when a spot size is very small (3-4
pixels in diameter) since the underlying statistical assump-
tion of this analysis is the use of a sufficiently large num-
ber of samples (pixels). For example, for a spot of the radius
equal to two pixels, there would be only π∗22 = 12.57 fore-
ground pixels, and the number of foreground outliers would
be 5%∗π∗22 = 0.63 pixel.

3.5. Foreground separation from multichannel
microarray images

For the case of multichannel images, the choices of fore-
ground separation approaches have to be explored [52]. The
goal in this case is to assign a label “foreground” or “back-
ground” to each pixel based on a vector of intensities. For ex-
ample, the red and green input image channels from a cDNA
slide form a two-dimensional vector of intensities at each
pixel. Foreground separation can be achieved by processing
red and green intensities separately or together.

Let us consider the foreground separation using inten-
sity thresholding. The foreground separation threshold val-
ues can be computed by considering (1) Euclidean distances
to each pixel represented as a two-dimensional intensity vec-
tor (circular separation), (2) intensities for red and green
channels at each pixel separately (rectangular separation),
(3) correlated intensities for red and green channels (linear

Rectangular
Circular

Linear
Nonlinear

Red Green

Figure 13: Possible foreground separation boundaries for two-
channel input data. The two perpendicular axes denote intensi-
ties in red and green channels. All other curves illustrate shapes of
boundaries that separate foreground and background (e.g., for dark
background, the points between a boundary and the intersection of
red and green axes are labeled as “background” and all other points
as “foreground.”)

separation), or (4) intensities of pixels after fusing red and
green channels with some nonlinear operators (nonlinear
separation, e.g., fusing channels with the Boolean OR opera-
tor). Depending on the choice of thresholding approach, the
foreground separation boundary for a two-channel microar-
ray image will lead to circular, rectangular, linear, or nonlin-
ear curves as illustrated in Figure 13.

Each of the aforementioned separation boundaries leads
to a different set of spot and background labels. One should
be aware of different statistical assumptions about a joint
PDF of multiple channels associated with each separation
boundary. A few examples of the results obtained using mul-
tiple boundary types are shown in Figure 14. As expected, the
total count of foreground pixels varies based on the multi-
channel separation method; circular-15913, rectangular-509,
linear-15877, nonlinear AND −13735, and nonlinear OR
−16045 (400× 400 image size, two bytes per pixel).

4. SUMMARY

Microarray technology and the data acquired from it form
a new way of learning about gene expression using sophis-
ticated visualization tools [53]. We have overviewed DNA
microarray grid alignment and foreground separation ap-
proaches to summarize our current understanding about
these two basic microarray processing steps. The importance
of these two processing steps lies in the fact that they are the
first operations performed with any raw microarray images.
Challenges related to automation and reliability of processed
image data remain still open questions.

For example, automation is important to guarantee mi-
croarray image processing repeatability. Assuming that an al-
gorithm is executed with the same data, we expect to obtain
the same results every time we perform an image process-
ing step. In order to achieve this goal, algorithms should be
“parameter-free” so that the same algorithm can be applied
repeatedly without any bias with respect to a user’s param-
eter selection. Thus, for instance, any manual positioning of
a grid template is not only tedious and time-consuming but
also undesirable since the grid alignment step cannot then
be repeated easily. A concrete example of the repeatability
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Examples of the results for spot versus background sep-
aration obtained from the two-channel input image shown in the
top row (a) with multiple boundary types; circular (b), rectangular
(c), linear (d), nonlinear after AND operation (e), and nonlinear
after OR operation (f).

issues is presented in [54], where authors compared results
obtained by two different users from the same slide (op-
tic primordial dissected from E11.5 wild-type and aphakia
mouse embryos) while using the ScanAlyze software package
[27]. Each user provided the same input about grid layout
first, and then placed multiple grids independently and re-
fined the spot size and position. The outcome of the compar-
ison led up to two-fold variations in the ratios arising from
the grid placement differences.

Furthermore, the amount of microarray image data is
growing exponentially and so one is concerned about prepar-
ing sufficient storage and computational resources to meet
the requirements of end users. For example, finding a grid
of spots can be achieved much faster from a subsampled mi-
croarray image (e.g., processing one out of 5× 5 pixels), but
the grid alignment accuracy would be less than if the origi-
nal microarray image had been processed. There are clearly
tradeoffs between computational resources (memory and
speed/time) and alignment accuracy given a large number of

microarray images [24]. While this issue might be resolved
without any accuracy loss by using either supercomputers or
distributed parallel computing with grid-based technology
[55, 56], it might still be beneficial to design image processing
algorithms that could incorporate such resource limitations
[55].

One could speculate about the future of cDNA microar-
ray image processing in terms of automation, processing
reliability, storage, and computational requirements as de-
scribed above. It is possible to envision a parallel between
the future microarray technology and the past semiconduc-
tor technology advancements. The semiconductor industry
has gone through several decades of technological improve-
ments with respect to wafer materials, data processing, and
automation to achieve the current state. This could become
a model for the microarray technology advancements. In
addition, it could be foreseen that current standardization
efforts [11] will enable more automation and higher relia-
bility, introductions of new substrate materials will lead to
higher quality of data [57] and the continuing algorithmic
work with the supporting efforts to build a bioinformatics
cyber-infrastructure [58] will lead to very high-throughput
microarray image processing and eventually to much better
understanding of biological phenomena.
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