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Abstract

We address the 3D volume reconstruction problem from depth adjacent sub-volumes acquired by a confocal laser scanning micro-
scope (CLSM). Our goal is to align the sub-volumes by estimating a set of optimal global transformations that preserve morphological
continuity of medical structures, e.g., blood vessels, in the reconstructed 3D volume. We approach the problem by learning morpholog-
ical characteristics of structures of interest in each sub-volume to understand global alignment transformations. Based on the observa-
tions of morphology, sub-volumes are aligned by connecting the morphological features at the sub-volume boundaries by minimizing
morphological discontinuity. To minimize the discontinuity, we introduce three morphological discontinuity metrics: discontinuity mag-
nitude at sub-volume boundary points, and overall and junction discontinuity residuals after polynomial curve fitting to multiple aligned
sub-volumes. The proposed techniques have been applied to the problem of aligning CLSM sub-volumes acquired from four consecutive
physical cross sections. Our experimental results demonstrated significant improvements of morphological smoothness of medical struc-
tures in comparison with the results obtained by naive feature matching followed by volume transformation at the sub-volume bound-
aries. The experimental results were evaluated by visual inspection and by quantifying morphological discontinuity metrics.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We address the problem of 3D volume reconstruction
from depth adjacent sub-volumes (i.e., sets of image
frames) acquired by a confocal laser scanning microscope
(CLSM). Recently, CLSM is recognized as one of the
major advances in microscopy due to (a) its ability of
non-destructive 3D imaging of a tissue sample with a rela-
tively large thickness, (b) high-resolution imaging, and (c)
use of biochemical-staining techniques that provides
unprecedented bio-molecular specificity [1,2]. CLSM pro-
vides true 3D resolution by suppressing signal from out-
of-focus planes without distorting any physical part during
the acquisition process. As a result, a single sub-volume
contains a set of images that are perfectly aligned in their
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reference coordinate system, and the images are consis-
tently labeled according to their physical depth. Nonethe-
less, CLSM imaging is limited by the maximum thickness
of a sample (about 20–40 lm) that might be imaged as a
single sub-volume. Thus, 3D volume reconstruction, i.e.,
alignment of multiple sub-volumes, is still needed and
remains a very challenging problem.

In general, accurate volume reconstruction is very
important for structural and quantitative analyses, e.g.,
surface area or volume analysis, as well as for visual inspec-
tion and understanding. The main difference, as well as
advantage of 3D volume reconstruction from 2D histolog-
ical cross sections acquired by CLSM in comparison to a
regular bright field microscope, is in the presence of 3D
structural information in sub-volumes (stacks of already
aligned image frames forming one sub-volume). Thus,
one can take an advantage of the available 3D morpholog-
ical information within each sub-volume for more accurate
alignment as it is presented in our paper.
sion for three-dimensional volume reconstruction, Comput. Vis.
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To construct a full 3D volume from acquired multiple
sub-volumes, one has to transform all 3D sub-volumes to
a reference coordinate system. The underlying assumption
in this process is based on the fact that CLSM imaging per-
forms optical sectioning without changing geometrical
parameters during image acquisition. In other words, it is
assumed that optical sections in a sub-volume are already
perfectly aligned. In contrast, physical sections (sub-vol-
umes) could be rotated and translated due to uncon-
strained specimen placement under the microscope, and
could be possibly distorted (scale and/or shear) due to
physical sectioning that includes tissue slicing and han-
dling. It is known to be very difficult or impossible to elim-
inate the slide preparation factors during acquisition
process, and therefore alignment driven image transforma-
tions are inevitable. Thus, our objective is to automate
accurate alignment by formulating 3D volume reconstruc-
tion problem from CLSM sub-volumes as an optimization
problem that minimizes morphological discontinuity
across physical boundaries of sub-volumes.

We approach the 3D volume reconstruction problem by
learning morphological characteristics of structures inside
of each sub-volume first, and then we align sub-volumes
using the structural characteristics. The sub-volume align-
ment process can be described by the following steps: Seg-
ment out salient medical structures in each sub-volume,
such as cylindrical structures. Establish correspondences
between structures from adjacent sub-volumes. Compute
2D centroids of the segmented structures in each frame
(lateral plane) to obtain a discrete set of points forming a
3D trajectory for each medical structure within a sub-vol-
ume. Estimate 3D trajectories from sets of points using
continuous polynomial models, e.g., regression-discontinu-
ity analysis [3] with an assumption of continuity of trajec-
tories within a sub-volume. Fuse corresponding 3D
trajectories of adjacent sub-volumes by combining their
3D trajectory models with an assumption of continuity of
trajectories across multiple sub-volumes. Align adjacent
sub-volumes by (a) computing a global sub-volume to
sub-volume transformation derived from the set of fused
3D trajectories and (b) applying the transformation to all
image frames within each sub-volume.

Based on the previous work, 3D volume reconstruc-
tion methods developed for pairwise sub-volume align-
ment can be classified as intensity-based methods (e.g.,
normalized cross correlation or normalized mutual infor-
mation) or morphological feature-based methods (e.g.,
shape matching, semi-automated method) [4]. Intensity-
based methods are typically performed by selecting or
generating a pair of representative images from adjacent
sub-volumes [5], determining a global transformation
parameters by minimizing a similarity metric for all pos-
sible transformations, and applying the computed global
transformation to the sub-volume. Intuitively, using the
intensity-based approach, one could select a pair of
frames that are the closest to the boundary of adjacent
physical sections to minimize morphological distortion
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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of the structural changes. However, it is well known that
due to spatial intensity heterogeneity of end frames in
sub-volumes, correlation techniques would result in very
low similarity measures, which frequently leads to unde-
sirable sensitivity to noise and inaccurate alignments
[6,7]. To overcome the problems with the boundary
frames, alternative approaches for frame selection have
been suggested that would select the highest contrast
image [5] or generate a representative image based on
sub-volume analysis, e.g., projection used in [8].
Although the intensity-based methods are successful in
a limited set of problems, it should be noted that they
are computationally expensive due to a large search
space of transformation parameters. If the search space
would be sub-optimally constrained then the alignment
accuracy might be compromised and could result in dis-
continuities along z-axis (depth).

Given partial 3D information about structures pre-
sented in each sub-volume, we extracted centroid trajecto-
ries of volumetric segments for registration purposes. In
the past, the use of similar trajectories could be found in
the computer vision literature applied to motion tracking
problems from video sequences [9,10]. In the case of video,
trajectory fusion is performed by using all available spatio-
temporal information [10]. Our work with 3D medical vol-
umes differs in two aspects. First, trajectories are extracted
from 2+z data sets as opposed to 2+t data sets. Second, the
primary objective in motion tracking from video is to esti-
mate motion of each object from its trajectory, while the
main objective in 3D volume reconstruction is to estimate
a global registration transformation from all 3D trajecto-
ries for alignment purposes. The ultimate goal of the trajec-
tory fusion in 3D medical volume reconstruction is to
automate accurate alignment of sub-volumes by optimizing
global registration accuracy as opposed to accurate track-
ing of each trajectory that would correspond to either a
medical structure or a single moving object in a video
stream. Our trajectory-based approach to 3D volume
reconstruction has not been explored for CLSM sub-vol-
ume alignment in the past.

The morphological feature-based methods are usually
performed by (1) detecting and segmenting morphological
features, such as centroids, shape, and/or area parameters,
from regions of interest, (2) computing correspondences of
features from two adjacent sub-volumes, and (3) estimating
a global transformation based on the corresponding fea-
tures. To estimate the most accurate transformation, it is
essential to minimize segmentation error and spurious fea-
ture matching, and to maximize the number of correspond-
ing features for comparison. If the sub-volume alignment
problem is approached by selecting 2D frames for match-
ing, then the frame selection issue is present as it was
described in the case of the intensity-based methods. In
order to avoid the problem of frame selection and to utilize
3D information present in 3D sub-volumes, our approach
to sub-volume alignment is based on extracting morpho-
logical characteristics of 3D structures in each sub-volume
sion for three-dimensional volume reconstruction, Comput. Vis.



S.-C. Lee, P. Bajcsy / Computer Vision and Image Understanding xxx (2007) xxx–xxx 3

ARTICLE IN PRESS
and then aligning the sub-volumes by fusing the
characteristics.

In general, measuring intra- and inter-sub-volume conti-
nuity or discontinuity from digital data requires defining
several mathematical concepts followed by understanding
sampling issues and information processing limitations.
For example, Leclerc and Zucker suggest the following
conditions that must be met for accurate and reliable esti-
mation of local structure [11]. First, both discontinuities in
intensity and the derivative of intensity must be located.
Second, the discontinuity must be located considering
noise, underlying local structure, and the neighborhood
size at the junction. Third, the appropriate fitting model
must be defined including the number of samples and the
class of fitting curves.

Although important for modeling discrete data, several
rigorous definitions of concepts were omitted for brevity,
for instance, the concepts such as discontinuity, minimum
spacing between neighboring discontinuities, minimum tra-
jectory sampling frequency, minimum signal-to-noise ratio
(SNR), or categories of 3D structures just to name a few.
All the above play a key role in applying the developed meth-
ods to other domain problems and should be considered
beforehand. For readers without medical background, the
problem presented here could be generalized to other analy-
ses of high dimensional curves and volumes, for instance, to
the problems related to fusing hyperspectral imagery. From
a mathematical perspective, the problem of fusing high
dimensional trajectories based on a continuity assumption
is complementary to the problem of splitting trajectories
based on a discontinuity assumption. The duality of these
problems has been studied for the purposes of extracting
image local structures, such as extracting 1D discontinuities
in [11,12] or performing 2D segmentation in [13,14]. The
same duality principle would apply to 3D structures and
3D SEGME

TRAJECTORGLOBAL TRANSFORMATION

INPUT SUB-VOLUMES

PHYSICAL SECTION
(SUB-VOLUME)

OPTICAL SECTION
(IMAGE FRAME)

Fig. 1. Overview of the traj
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hence the utility of the presented fusion methods would also
be in providing a quality control for the preparation of histo-
logical sections. For instance, if the discontinuity or residuals
would exceed a certain value then the sub-volumes would be
flagged for medical technicians.

The paper is organized as follows: Section 2 describes
the process of 3D volume reconstruction using two differ-
ent trajectory fusion methods based on two evaluation
approaches. Section 3 presents the material preparation
for test data, followed by experimental results for different
(a) trajectory fusion method, (b) physical gaps between
adjacent sub-volumes, and (c) polynomial model
complexity.

2. Methods

In this paper, we developed a trajectory-based sub-vol-
ume alignment method using two trajectory fusion objec-
tives, such as minimum discontinuity across the pair of
adjacent sub-volumes and minimum residual of a polyno-
mial fit to corresponding trajectory points from the adja-
cent sub-volumes. The overall process of the developed
techniques is described as follows. An overview of the pro-
cess is shown in Fig. 1.

(1) Perform 3D segmentation to detect all possible closed
volumetric segments (e.g., vascular structures) in each
sub-volume.

(2) Remove incomplete volumetric segments (e.g., short
segments along z-axis).

(3) Find corresponding volumetric segments in two adja-
cent sub-volumes.

(4) Compute volumetric segment trajectory points by
estimating 2D centroids in each 2D frame of a sub-
volume.
NTATION

TRAJECTORY
COMPUTATIONY FUSION

FEATURE MATCHING

ectory-based alignment.

sion for three-dimensional volume reconstruction, Comput. Vis.
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(5) Determine pairs of alignment control points from
two adjacent sub-volumes by fusing corresponding
sets of trajectory points.

(6) Estimate parameters of a global alignment transfor-
mation model based on the pairs of alignment control
points.
Fig. 3. An example of a pair of sub-volumes after 3D segmentation.
2.1. Three-dimensional segmentation

We developed a sphere-based region growing method
that can segment out partially closed volumetric segments
by extending 2D ball-based segmentation method
described in [15]. The volumetric segments in our data cor-
respond to vascular structures. In the absence of artificially
inserted fiduciary markers, detecting vascular structures is
critical for computer-assisted 3D volume reconstruction
including tile mosaicking and sub-volume alignment tasks.
The fact that vascular structures are observed as partially
closed volumetric segments in CLSM images is caused by
photo bleaching or loss (possibly lack) of a fluorescent
dye. The developed region growing method can recover
vascular regions in those cases when an edge of a color
homogeneous closed region is discontinued, an edge is par-
tially destroyed during noise thresholding (especially if a
high threshold has to be applied to remove background),
or an edge is missing since it lies partially outside of the
imaged area. Fig. 2 shows an illustration of 3D segmenta-
tion by growing interior region of a vascular region using a
virtual sphere (ball). Fig. 3 illustrates an example of a pair
of sub-volumes after 3D segmentation. Features are illus-
trated with various levels of deformation along the axial
direction (depth axis).

In order to automate the segmentation process, the fore-
ground versus background threshold value and ball diam-
eter parameters must be chosen. The threshold value is
usually based on the signal-to-noise (SNR) ratio of a spe-
cific instrument. It is possible to optimize the threshold
value by analyzing the histogram of connected segments
after thresholding as a function of the threshold value
because a large number of small segments occurring due
to speckle noise disappear around the optimal threshold
Fig. 2. 3D segmentation of a volumetric region using a sphere.
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value. The choice of a ball diameter used for connectivity
analysis of partially closed volumes is tied to the medical
meaning of structures. It requires medical expertise to
select structures of interest and analyze their characteristic
boundary length and the level of boundary closeness. Thus,
we have experimentally chosen the ball diameter by evalu-
ating multiple segmentation outcomes and selecting the
diameter that led to a visually determined ‘‘meaningful’’
number of structures.

2.2. Selection of three-dimensional segments

The three-dimensional segmentation method in Section
2.1 outputs a set of volumetric features from a sub-volume.
Due to intensity variation and morphological changes of
feature structures, such as blood vessels, structures might
be partially open. For those structures, 3D virtual sphere
may not always stay inside a cylindrical structure, and
therefore we remove the corresponding segments by limit-
ing the number of voxels in a volumetric structure. During
this operation, large blood vessel features might be undesir-
ably removed. To prevent the removal, we derived the max-
imum number of voxels based on statistical analysis of all
detected volumetric segments. Unusually large features
exceeding the voxel count limit will be removed since in
general very large features often lead to less accurate cen-
troid locations than small-to–normal sized blood vessels.

Although volumetric features with significant morpho-
logical change or bifurcation may be of interest to medical
experts, they are not necessarily useful for registration pur-
pose because of their associated high uncertainty of trajec-
tory point locations. These bifurcating features can be
filtered out for registration purposes by comparing the inte-
rior areas of blood vessel cross sections along z axis. Sud-
den changes of two-dimensional vascular area and/or
centroid location along z-axis are indicators of bifurcation
and are filtered out from the set of selected 3D segments.

2.3. Finding corresponding segments

Although our final goal is to co-register a pair of adja-
cent sub-volumes based on structural trajectories of
detected features, it is often simpler to establish correspon-
dence of pairs of trajectories by comparing 2D shapes of
features than comparing 3D shapes of features.
sion for three-dimensional volume reconstruction, Comput. Vis.
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The parameter estimation can be performed using the
RANSAC algorithm [16] that randomly evaluates multiple
pairs of corresponding pixels. However, in the case of
CLSM data, one could use rather a deterministic and com-
putationally simpler method than RANSAC. This method
[17] had been evaluated in the past on CLSM data for fea-
ture matching [5] and performs sufficiently well. The
method establishes feature correspondence by solving the
Procrustes problem [18] using two-step matching method,
such as Euclidian distance-based method followed by vec-
tor distance-based method. Fig. 4 shows an example of
result for feature correspondence problem.

2.4. Trajectory fusion

The execution of trajectory fusion takes two steps. First,
we compute trajectory points of a volumetric segment by
estimating a set of 2D centroids in each 2D frame of a
sub-volume. Next, we fuse pairs of corresponding trajecto-
ries from matching segments in adjacent sub-volumes
where the matched segments are found according to Sec-
tion 2.3. The fusion goal of bringing together 3D sub-vol-
umes is achieved by using two different methods, such as
extrapolation and residual minimization. These methods
take pairs of control points that connect the matching adja-
cent volume segments and analyze the continuity of the
corresponding pairs of trajectories. After completing the
fusion of each trajectory, a global transformation minimiz-
ing discontinuity of all fused trajectories is computed
(described in Section 2.5).

Computing trajectory points of volumetric segments. We
define a set of 3D trajectory points derived for the ith vol-
umetric segment in the kth sub-volume as follows:

tk
i ¼ fðxk

i1; y
k
i1; z

k
i1Þ; ðxk

i2; y
k
i2; z

k
i2Þ; . . . ; ðxk

im; y
k
im; z

k
imÞg ð1Þ

where m is the number of frames (depth) in the sub-volume.
The lateral coordinate (x,y) is a centroid location in a
frame, and the z coordinate represents the depth (frame in-
Fig. 4. The correspondence outcome from two phases. The left and right image
segments that are labeled from 1 through 17. The centroid locations of segmen
the largest error.
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dex normalized with respect to lateral pixel coordinate sys-
tem) in a volumetric segment.

Determining pairs of alignment control points at a junc-

tion of sub-volumes. This task is achieved by performing
trajectory fusion under a set of optimization objectives.
The goal of trajectory fusion is to determine pairs of con-
trol points to estimate the most accurate global transfor-
mation a:R2 fi R2 applied to lateral planes (frames) of
sub-volumes. In our work, we chose to estimate affine
transformation parameters. First, given a set of matching
pairs of depth-adjacent trajectories tk

i and tkþ1
i (i 2 detected

features), we compute the modified trajectory t�kþ1
i by

translational offset ðukþ1
i ; vkþ1

i Þ based on two different fusion
approaches (see following sections).

t�kþ1
i ¼fðxkþ1

i1 þukþ1
i ;ykþ1

i1 þ vkþ1
i ;zkþ1

i1 Þ;ðxkþ1
i2 þukþ1

i ;ykþ1
i2 þ vkþ1

i ;zkþ1
i2 Þ;

. . . ;ðxkþ1
im þukþ1

i ;ykþ1
im þ vkþ1

i ;zkþ1
im Þg

ð2Þ

Then, t�kþ1
i is considered as a set of modified (translated in

lateral plane) trajectories that best fuse (connect) the corre-
sponding features in tk

i . Next, we compute the global affine
transformation aglobal by using all features and the least-
squares fit defined as follows:

aglobalð�Þ ¼ arg min
a

Xn

i¼1

t�kþ1
i � a tkþ1

i

� �� �2

 !
ð3Þ

where n is the number of matching volume features. Final-
ly, we transform a set of images (frame) in the sub-volume
k + 1 by the estimated aglobal to create the final aligned sub-
volume. We propose two approaches for trajectory fusion
denoted as fusion by extrapolation and by polynomial
model fitting in following sections.

2.4.1. Fusion by extrapolation
The trajectory fusion by extrapolation is inspired by

maximizing connectivity of matching trajectories. Assum-
ing that there are some gaps between adjacent sub-vol-
s are to be aligned. Overlays illustrate established correspondences between
ts are sorted based on the correspondence error from the smallest error to

sion for three-dimensional volume reconstruction, Comput. Vis.
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umes, we extrapolate a pair of points ðxk
iðmþ1Þ;

yk
iðmþ1Þ; z

k
iðmþ1ÞÞ 2 tk

i and ðxkþ1
i0 ; ykþ1

i0 ; zkþ1
i0 Þ 2 tkþ1

i where
zk

im < zk
iðmþ1Þ ¼ zkþ1

i0 < zkþ1
i1 . Then, we compute the transla-

tional offset ðukþ1
i ; vkþ1

i Þ of feature i as follows:

ðukþ1
i ; vkþ1

i Þ ¼ ðxkþ1
i0 � xk

iðmþ1Þ; y
kþ1
i0 � yk

iðmþ1ÞÞ ð4Þ

To generate the pair of extrapolated points
ðxk

iðmþ1Þ; y
k
iðmþ1Þ; z

k
iðmþ1ÞÞ and ðxkþ1

i0 ; ykþ1
i0 ; zkþ1

i0 Þ, we used two dif-
ferent extrapolation methods such as an end-point duplica-
tion and polynomial based methods using three different
degrees of polynomials. First, the end-point duplication is
performed by replicating (x,y) coordinate of the adjacent
end trajectory points with physical gap Dk between tk

i and
tkþ1
i as follows:

ðxk
iðmþ1Þ; y

k
iðmþ1Þ; z

k
iðmþ1ÞÞ ¼ ðxk

im; y
k
im; z

k
im þ DkÞ

ðxkþ1
i0 ; ykþ1

i0 ; zkþ1
i0 Þ ¼ ðxkþ1

i1 ; ykþ1
i1 ; zkþ1

i1 � DkÞ
ð5Þ

An example of trajectory fusion by end-point duplication is
illustrated in Fig. 5.

Second, the polynomial-based extrapolation is per-
formed by estimating the polynomial functions f kðcÞ

i and
f kþ1ðcÞ

i with degree c based on tk
i and tkþ1

i , respectively. To
compute the 3D polynomial curve, we estimate a function
f kðcÞ

i :

f ðcÞx ðzÞ ¼ a0 þ a1zþ . . .þ aczc

f ðcÞy ðzÞ ¼ b0 þ b1zþ . . .þ bczc
ð6Þ

where

m
Pm
j¼1

zj � � �
Pm
j¼1

zc
j

Pm
j¼1

zj
Pm
j¼1

z2
j � � �

Pm
j¼1

zcþ1
j

..

. ..
. . .

. ..
.

Pm
j¼1

zc
j

Pm
j¼1

zcþ1
j � � �

Pm
j¼1

z2c
j

2
666666666664

3
777777777775

a0 b0

a1 b1

..

. ..
.

ac bc

2
66664

3
77775¼

Pm
j¼1

xj
Pm
j¼1

yj

Pm
j¼1

zjxj
Pm
j¼1

zjyj

..

. ..
.

Pm
j¼1

zc
jxj

Pm
j¼1

zc
jyj

2
666666666664

3
777777777775
:

Next, a pair of extrapolated points is generated as follows:

ðxk
iðmþ1Þ;y

k
iðmþ1Þ;z

k
iðmþ1ÞÞ ¼ ðf

kðcÞ
ix ðzk

imþDkÞ;f kðcÞ
iy ðzk

imþDkÞ;zk
imþDkÞ

ðxkþ1
i0 ;ykþ1

i0 ;zkþ1
i0 Þ¼ ðf

kþ1ðcÞ
ix ðzkþ1

i1 �DkÞ;f kþ1ðcÞ
iy ðzkþ1

i1 �DkÞ;zkþ1
i1 �DkÞ

ð7Þ
T1

Fig. 5. Trajectory fusion by connecting end points. T1 denotes the offset
after the global affine transformation estimated by the end-point point
connection approach.
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2.4.2. Fusion by model fitting

The assumption behind the fusion by model fitting is
that relatively short trajectory of a blood vessel follows a
polynomial curve with degree of less than three (cubic).
Although the exact model of the trajectories cannot be
defined, we show that maximum three degrees of polyno-
mial fit to the real data quite well based on our experimen-
tal results.

First, we define rðcÞðtk
i Þ as a residual after fitting c-degree

polynomial function f kðcÞ
i to tk

i below:

rðcÞðtk
i Þ ¼ ðrðcÞx ðtk

i Þ þ rðcÞy ðtk
i ÞÞ=2 ð8Þ

where rðcÞx ðtk
i Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
j¼1½xk

ij � f kðcÞ
ix ðzk

ijÞ�
2

q
and rðcÞy ðtk

i Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Pm
j¼1½yk

ij � f kðcÞ
iy ðzk

ijÞ�
2

q
. The coordinate ðxk

ij; y
k
ij; z

k
ijÞ de-

notes a trajectory point of the trajectory i of the sub-vol-
ume k in depth j.

To compute a residual of fused trajectory from a pair of
trajectories, we introduce a binary operator �Dk . The bin-
ary operator performs a simple merging of a pair of trajec-
tories between the sub-volume k and k + 1 with a physical
gap Dk, e.g., missing frames. Dk is assumed to be a constant
for all sub-volumes (typically no more than three frame
length).

tk
i�Dk tkþ1

i ¼ fðxk
i1; y

k
i1; z

k
i1Þ; . . . ; ðxk

im; y
k
im; z

k
imÞ;

ðxkþ1
i1 ; ykþ1

i1 ; zkþ1
i1 þ zk

im þ DkÞ;
. . . ; ðxkþ1

im ; ykþ1
im ; zkþ1

im þ zk
im þ DkÞg ð9Þ

Then the residual of a fused trajectory can be computed as
rðcÞðtk

i�Dk t
kþ1
i Þ according to Eqs. (8) and (9).

Next, for each pair of matching trajectories i, we search
the translational offset ðukþ1

i ; vkþ1
i Þ for t�kþ1

i by minimizing

the residual rðcÞðtk
i�Dk t�kþ1

i Þ as follows:

ðukþ1
i ; vkþ1

i Þ ¼ arg min
ðukþ1

i ;vkþ1
i Þ2neighborhood

ðrðcÞðtk
i�Dk t

�kþ1
i ÞÞ ð10Þ

An example of trajectory fusion by residual minimization is
shown in Fig. 6.
T2

Fig. 6. Trajectory fusion by residual minimization of a fitted model. T2

denotes the offset after global affine transformation estimated by the
residual minimization approach.

sion for three-dimensional volume reconstruction, Comput. Vis.
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We limited the search space (U,V), where ukþ1
i 2 U and

vkþ1
i 2 V , to a relatively small pixel neighborhood, e.g.,

usually less than 10 by 10. It is based on the maximum
deviation of the trajectory points from the average loca-
tion of the trajectory points in x–y plane. Therefore, the
computational requirement for residual minimization
method is O(n·jUj·jVj), where n is the number of trajec-
tories to be fused. In our experiments, the typical number
of matching trajectories was less than 30, and therefore
the computational cost for the matching process was neg-
ligible in comparison with, for instance, volume
segmentation.

2.5. Global parameter estimation of alignment
transformations

Given an affine transformation model a: R2 fi R2, the
transformation parameters can be estimated by selecting
at least three pairs of corresponding points and computing
six affine transformation parameters shown in the equation
below.

x0
y0

� �
¼

a00 a01

a10 a11

� �
x

y

� �
þ

b0

b1

� �
ð11Þ

The values (x 0,y 0) = a(x,y) are the transformed coordi-
nates of the original image coordinates (x,y) by the affine
transformation a(Æ). The four parameters, a00, a10, a01,
and a11, represent a 2 by 2 matrix compensating for scale,
rotation and shear distortions. The two parameters, b0

and b1, represent a 2D translation vector. The parameter
estimation can be performed either (1) by feature selection
method (i.e., selection of three features) based on a com-
pactness measure [5] or (2) by performing a least-squares
fit to all features and solving the over-determined set of
linear equations for the six affine transformation
parameters.

From the image alignment accuracy viewpoint, selected
pairs of segment centroids should be well spatially distrib-
uted in the x–y image plane and should not be collinear. If
points are close to be collinear then the affine transforma-
tion parameters cannot be uniquely derived from a set of
linear equations (more unknowns than the number of
equations), and hence the alignment is characterized by
large errors. If points are locally clustered and do not cover
an entire image spatially then the affine transformation is
very accurate only in the proximity of the selected points.
However, the affine transformation inaccuracy increases
with the distance from the selected points, and thus spa-
tially global registration error metrics lead to large align-
ment errors again. In order to avoid large alignment
errors, we have designed a compactness measure that
assesses the pairs of matched centroid points in terms of
their distribution and collinear arrangement. The compact-
ness measure is defined as the ratio of the entire image area
divided by the largest triangular area formed from the con-
trol points.
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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2.6. Evaluation metrics for alignment accuracy

In this section we introduce three evaluation metrics to
be used after applying the final global transformation, such
as (1) discontinuity magnitude at sub-volume boundary
points, (2) overall discontinuity residual, and (3) junction
discontinuity residual. The residuals were computed by fit-
ting polynomial curves to multiple sub-volumes after the
final global transformation. Developed two methods, i.e.,
extrapolation and model fitting, were evaluated by these
three evaluation metrics, and the results were presented
in Section 3.

Metric 1: discontinuity magnitude at sub-volume bound-

ary points. The overall discontinuity DðcÞk�kþ1 between sub-
volumes k and k + 1 is defined as follows:

DðcÞk�kþ1 ¼
1

n

Xn

i¼1

dðcÞðtk
i ; aðtkþ1

i ÞÞ ð12Þ

where the ith trajectory discontinuity dðcÞðtk
i ; aðtkþ1

i ÞÞ is a
Euclidian distance (in lateral plane) of the connecting point
pair ðxk

iðmþ1Þ; y
k
iðmþ1Þ; z

k
iðmþ1ÞÞ and ðxkþ1

i0 ; ykþ1
i0 ; zkþ1

i0 Þ generated
based on Eq. (7). For our experiment, we assumed that tra-
jectories could be modeled by low degree polynomials, and
therefore the discontinuity was measured by linear extrap-
olation at the end points (d(c=1)(Æ)).

Metric 2: overall discontinuity residual after polynomial

curve fitting to multiple aligned sub-volumes. The disconti-
nuity residual RðcÞk�kþ1 of the c-degree polynomial model
for the Dk physical gap between adjacent sub-volumes
can be evaluated according to the equation below:

RðcÞk�kþ1 ¼
1

n

Xn

i¼1

rðcÞðtk
i�Dk aðtkþ1

i ÞÞ ð13Þ

where rcðtk
i�Dk aðtkþ1

i ÞÞ is a residual of the i-th feature in the
sub-volumes k and k + 1 after merging a pair of trajectories
with a binary operator �Dk (as shown in Eq. (9)) referring a
physical gapDk between the two sub-volumes. The value n

is the number of matching trajectories (features). We as-
sume that sub-volume correspondence is known, for exam-
ple, tk

i and tkþ1
i are assumed to be a pair of matching volume

features.
Metric 3: junction discontinuity residual after polynomial

curve fitting to multiple aligned sub-volumes. The junction
discontinuity residual JRðcÞk�kþ1, of the c-degree polynomial
model for the Dk physical gap between adjacent sub-vol-
umes includes residuals only over the junctions. The defini-
tion of the junction discontinuity metric JRðcÞk�kþ1 is provided
below:

JRðcÞk�kþ1 ¼ RðcÞk�kþ1 � ðR
ðcÞ
k þ RðcÞkþ1Þ ð14Þ
3. Experiments

In this section, we present the experimental materials
and the performance evaluations of the proposed trajec-
tory-based registration under the evaluation metrics
sion for three-dimensional volume reconstruction, Comput. Vis.
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described in Section 2.6. We used four consecutive serial
sections of human tonsil tissue samples as described in
Section 3.1, applied two different approaches, such as
extrapolation and residual minimization, and evaluated
results with three alignment accuracy metrics, such as
discontinuity magnitude, and overall and junction
residuals.

3.1. Material preparation

Formalin-fixed, paraffin-embedded tonsil tissue samples
were sectioned at 4 lm thickness. The use of archival
human tissue in this study was approved by the Institu-
tional Review Board of the University of Illinois at Chi-
cago. All histological serial sections were examined with
a Leica SP2 laser scanning confocal microscope (Leica,
Heidelberg, Germany) using the 40· objective with 500–
650 nm excitation wavelength range for the test specimens.
Images were stored in tagged information file format
(TIFF) with 512 by 512 pixel resolution. One 3D volume
was formed from 24 image frames along axial coordinates
(z-coordinate or depth) in the same lateral area. Therefore,
a sub-volume consists of 512 by 512 by 24 voxels, which is
equivalent to 237.92 · 237.92 · 3.74 lm in physical dimen-
sion. The green structures represent extravascular matrix
patterns (loops) or blood vessels.

3.2. Results

We evaluated the discontinuity magnitude, and overall
and junction residuals by considering three variables for
trajectory-based 3D volume reconstruction from CLSM:
(1) polynomial degree c of centroid trajectories along axial
direction (z-axis of the sub-volume), (2) a range of gaps
between adjacent sub-volumes Dk, and (3) trajectory fusion
approach (extrapolation versus residual minimization).
Four consecutive sub-volumes were used for our evalua-
tion, and therefore three pairs of sub-volume registration
results are shown. We labeled these four sub-volumes as
S1, S2, S3, and S4.
Fig. 7. A pair of CLSM sub-volumes (S1 and S2): (left) sub-volume 1 (upp

Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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Feature segmentation. Fig. 7 shows an example of a pair
of input sub-volumes. The green structures represent extra-
vascular matrix patterns (loops) or blood vessels in human
tonsil tissues. Since tonsillar tissues contain plenty of fea-
tures with closed contours that represent blood vessels,
those feature regions are segmented out using 3D ball-
based segmentation as described in Section 2.1. Fig. 8
shows segmented sub-volumes. As observed in the 3D seg-
mented volumes, we could extract enough number of cylin-
drical structures where the set of trajectories are to be
extracted. Although the centroid locations in a cylindrical
structure could be distorted by structural shape changes
and/or segmentation accuracy, we assume the major con-
tribution of the centroid location is from the structural tra-
jectory of the blood vessels (cylindrical structures).

After acquiring the set of volume features as shown in
Fig. 8, feature correspondence was established based the
automated feature matching method as described in [17].
Next, we computed trajectories tS1

i and tS2
i (i 2 matching

features) based on the series of centroids from 2D optical
sections in each volume feature. Fig. 9 shows an illustration
of 3D trajectories for the pair of (S1,S2) sub-volumes. Line
segments (shown as red in colour figure) represent the actual
centroid points, and the curves (shown as green in colour
figure) indicate polynomial curves with the degree of three.
Also notice that the numerical labels on each trajectory
show the trajectory correspondences between S1 and S2.

Trajectory fusion. Fig. 10 shows the results of trajectory
fusion evaluated based on discontinuity magnitude metric
(metric 1) using the extrapolation and residual minimiza-
tion methods. Multiple curves in Fig. 10 correspond to lin-
ear, quadratic, and cubic models and the results are
presented as a function of gaps between a pair of sub-vol-
umes. Based on the results, we arrived to the following two
conclusions about the discontinuity metric (metric 1). First,
if pairs of sub-volumes are characterized by large physical
discontinuities (e.g., S1–S2 has larger physical discontinu-
ity than S3–S4), then the differences between the two meth-
ods are more noticeable and the extrapolation method
outperforms the residual minimization method. For exam-
er physical section) and (right) sub-volume 2 (lower physical section).

sion for three-dimensional volume reconstruction, Comput. Vis.



Fig. 8. Segments obtained by segmenting sub-volumes in Fig. 7. Cylindrical structures represent segments of blood vessels in the test specimen.

Fig. 9. A pair of sets of trajectories from adjacent sub-volumes (enhanced
range). Numbers indicate the labels of matching trajectories. Line
segments (shown as red in colour figure) were drawn by connecting
centroids, and curves (shown as red in colour figure) were drawn by
polynomial functions with the degree of three. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)
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ple, Fig. 10(a) shows not only relatively high absolute value
of discontinuities but also large relative differences of dis-
continuities between the two methods (3.4–3.7 discontinu-
ity range in pixels) in comparison with Fig. 10(b) (3.2–3.4
discontinuity range) and Fig. 10(c) (3.1–3.2 discontinuity
range). Second, if trajectories could be described by low
degree polynomials then the methods would be relatively
insensitive to the polynomial model complexity (e.g.,
curves in the graph using the same method remain close
to each other) and almost independent of a small range
of physical gaps.

Fig. 11 shows the results of trajectory fusion evaluated
based on the overall discontinuity residual metric (metric
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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2) using the extrapolation and residual minimization meth-
ods. Our conclusions based on Fig. 11 are as follows. First,
the residual minimization method always outperforms the
extrapolation method for the same degree polynomial
models. Second, all trajectory residuals (for all methods
and their degrees of polynomial models) decrease as a func-
tion of physical gaps between adjacent sub-volumes. Third,
the absolute value of trajectory residuals depends more on
the degree of polynomial models than on the method type.

Fig. 12 shows the results of trajectory fusion evaluated
based on junction residual metric (metric 3). The results
are similar to the results in Fig. 11 in terms of the trends.
The differences are (a) in smaller absolute magnitudes of
the residual values due to the exclusion of parts of the
residuals from metric 3 that are present in metric 2, and
(b) in clustering of the results obtained from extrapolation
and residual minimization methods.

In Figs. 13(a) and (d) show 3D trajectories from the sub-
volumes S1 and S2 before trajectory fusion (enhanced
range). Figs. 13(b), (c) (e), and (f) show the results of the
data in Figs. 13(a) and (d) after trajectory fusion using
extrapolation and residual minimization methods, respec-
tively, with linear and cubic polynomial models.

Based on the trajectory fusion results, we computed the
optimized global affine transformation, and they are shown
in Fig. 14. For visual comparison purpose, we show the 3D
image and a side view of the reconstructed volumes in a sub-
region without any trajectory fusion (see Fig. 14(b)), with
extrapolation-based trajectory fusion (see Fig. 14(c)), and
with residual minimization-based trajectory fusion method
(see Fig. 14(d)). Based on the visual verification, one could
observe that the discontinuities between adjacent sub-vol-
umes are much higher without trajectory fusion than with
any of the trajectory fusion methods. How to select an
appropriate method was not studied in this work, and the
discussion of this issue is provided in Section 4.
4. Discussion

In this section, we discuss first how an end-user could
select the most appropriate fusion method and polynomial
sion for three-dimensional volume reconstruction, Comput. Vis.
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Fig. 10. Trajectory discontinuity (metric 1) as a function of physical gaps between adjacent sub-volumes: S1 and S2 in (a), S2 and S3 in (b), and S3 and S4
in (c). EX() and RM() refer to extrapolation method and residual minimization method, respectively. The extrapolation method is plotted with dotted
lines, while the residual minimization method is plotted with solid lines. x-axis: gap, y-axis: discontinuity magnitude.
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Fig. 11. Overall trajectory residual (metric 2) as a function of physical gaps between adjacent sub-volumes: S1 and S2 in (a), S2 and S3 in (b), and S3 and
S4 in (c). EX() and RM() refer to the extrapolation and residual minimization methods, respectively. The extrapolation method is plotted with dotted lines,
while the residual minimization method is plotted with solid lines. x-axis: gap, y-axis: residual.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 32 4 1 32 4 1 32 4

Fig. 12. Junction trajectory residual (metric 3) at junctions as a function of physical gaps between adjacent sub-volumes: S1 and S2 in (a), S2 and S3 in (b),
and S3 and S4 in (c). EX() and RM() refer to the extrapolation and residual minimization methods, respectively. The extrapolation method is plotted with
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degree (model complexity). Next, we discuss the perfor-
mance evaluation methodology.

4.1. Method and model selection

In terms of the fusion method selection, the choice could
be driven by weighting application specific priorities, such
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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as a continuity of matched trajectories at the sub-volume
border or a smoothness of matched trajectories within
the two adjacent sub-volumes. These decisions can be
guided by designing a cost function for a hybrid fusion
method. In terms of the polynomial degree selection, the
polynomial degree (model complexity) should be chosen
based on a priori knowledge about medical structures
sion for three-dimensional volume reconstruction, Comput. Vis.



Fig. 13. (a,d) Visualization of extracted trajectories from S1 and S2 assuming the gap equal to one frame depth. Curve fitting results with a linear model
(a) and with a cubic model (d). (b,e) Visualization of trajectory fusion using the extrapolation method with gap equal to one (enhanced range). Fused
trajectories with a linear model (b) and a cubic model (e). (c,f) Visualization of trajectory fusion using the residual minimization method with gap equal to
one (enhanced range). Fused trajectories with a linear model (c) and a cubic model (f).

Fig. 14. (a) The yellow box delineates the magnified region in figures (b), (c) and (d). Final 3D volume (b) without trajectory fusion for gap equal one, (c)
after trajectory fusion with extrapolation for gap equal to one and a linear model, and (d) after trajectory fusion with residual minimization for gap equal
to one and a cubic model.
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and their corresponding feature trajectories. It is recom-
mended to avoid over-fitting by studying medical struc-
tures of interest.

For example, if there exists a solid understanding of 3D
trajectory models of medical structures, then the residual
minimization method would be preferred. Otherwise, the
extrapolation method would be recommended with the
goal to improve continuity of adjacent sub-structures
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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(features). Yet another possibility of trajectory fusion
may be a combination of the proposed two methods.
After computing the global adjustments Uextrapolation and
Uresidual_minimization in a lateral plane (where U extrapolation ¼
fðuEX

i ; vEX
i Þji 2 matching segmentsg, and U residual minimization ¼

fðuRM
i ; vRM

i Þji 2 matching segmentsgÞ, the final hybrid
adjustment Uhybrid could be calculated by weighting
Uextrapolation and Uresidual_minimization such as U hybrid ¼
sion for three-dimensional volume reconstruction, Comput. Vis.
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fðkuEX
i þ ð1� kÞuRM

i ; kvEX
i þ ð1� kÞvRM

i Þji 2 matching seg-
mentsg, where k is a weighting coefficient in [0,1].

4.2. Performance evaluation methodology

In this work, we presented our quantitative evaluation
metrics and visual comparisons to assess morphological
smoothness. However, we did not show performance eval-
uations based on comparisons with ground truth transfor-
mations because it is extremely difficult to create ground
truth data. We have attempted to devise three simulation
methodologies to simulate realistic CLSM sub-volumes
with known (ground truth) alignment parameters. First,
we split one sub-volume into two adjacent pieces that
would simulate tissue sectioning. Since splitting a series
of images does not introduce any geometrical distortion,
the ground truth parameters are known to be a unit trans-
formation and could be compared with the optimized
transformation based on our developed methods. How-
ever, we were unsuccessful with this simulation approach
because physical sectioning was excluded from the simula-
tion, i.e., a simple end-point connection gives the best
alignment result. Second, to simulate distortions due to
physical sectioning, we tried to apply in the neighborhood
of two connecting sub-volumes to introduce data driven
trajectory distortion following an exponential model
(empirically observed in several serial sections). Nonethe-
less, we discovered that it is almost impossible to recover
the model parameters of the physical distortion introduced
by sectioning. Third, we simulated the physical sectioning
by swapping the depth locations of the split volume as
described in the first simulation approach. For example,
the images labeled from 1 to 24 are split into two image
sets, such as 1–12 and 13–24, and then the images are reor-
dered as 13, . . . ,24, 1, . . . ,12. This simulation scenario is
motivated by the fact that the both connecting z-frames
of a sub-volume are naturally distorted by physical section-
ing. We concluded that the main problem with this type of
simulation was the change of the trajectory structure that
would not correspond to realistic morphological changes
in a specimen. As a result, we evaluated our trajectory-
based registration performance based on visual smoothness
as most medical experts would do currently, in addition to
the evaluations by the two metrics, such as the discontinu-
ity and trajectory residual metrics.

5. Conclusion

We addressed the problem of 3D volume reconstruc-
tion from depth adjacent CLSM sub-volumes by estimat-
ing an optimal global image transformation which
preserves morphological smoothness of medical structures
inside of the reconstructed 3D volume. To preserve mor-
phological smoothness of the reconstructed 3D medical
structures, we defined three metrics for morphological
discontinuity (discontinuity magnitude at sub-volume
boundary points and overall and junction discontinuity
Please cite this article in press as: S.-C. Lee, P. Bajcsy, Trajectory fu
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residuals after polynomial curve fitting to multiple aligned
sub-volumes), and then minimized the metrics across
adjacent sub-volumes and all salient structures. Our
experimental results demonstrate significantly improved
morphological smoothness of medical structures evaluated
visually or by the defined metrics when applied to human
tonsil tissues.

The main contributions of this work are in (1) the pre-
sentation of two novel registration optimization methods
using trajectory fusion, and (2) the three quantitative eval-
uation metrics for assessing morphological smoothness of
the adjoined trajectories. In addition, our developed 3D
volume registration using trajectory fusion has not yet been
applied in any application domain in the past and our par-
ticular application to CLSM data was successfully demon-
strated in this work.

Our future research will extend the registration frame-
work by including other segmented features than just the
centroid points forming trajectories. In addition, we plan
to investigate global registration approaches with large
data sets. For example, in order to explore the effects of
global bundle adjustment with large data sets, one has to
analyze theoretical limitations of the underlying structures
and consider the practical challenges of data preparation.
(preparation time, data quality and cost). The global bun-
dle adjustment applied to all affine pairwise estimates
would be feasible in theory if the trajectory would be per-
sistent. In this case, persistent trajectory refers to a cylindri-
cal structure found in all frames across all sub-volumes
without significant morphological changes (e.g., bifurca-
tion) and intensity changes (e.g., fluorescent fading). Based
on our current understanding of the medical structures,
there would be a need to collect data and study the persis-
tence of trajectories before applying the global bundle
adjustment.
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