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ABSTRACT 
 
We present a decision support system using data 
mining methods and geographic information. 
The geographic information consists of 
heterogeneous, raster and vector, data types. 
While raster data types represent grid-based 
information collected by camera sensors, e.g., 
satellite images, vector data types are used for 
representing boundary information, for example, 
man-made or naturally defined regions, or point 
information, for instance, building locations, 
customer’s permanent locations or measurement 
locations. The occurrence of heterogeneous 
geographic data types and the information 
associated with raster and vector data pose 
challenges to data analyses supporting decision 
makers in environmental preservation and 
development planning domains. In this work, we 
focus on the data analysis problem related to 
forming geographic regions as aggregations of 
basic boundaries under a set of decision support 
constraints. This problem is defined as a search 
for the best partition of any geographical area 
that is (a) based on raster or point information, 
(b) formed by aggregations of known 
boundaries, (c) constrained by spatial locations 
of know boundaries and (d) minimizing an error 
metric. We present our overall approach and 
describe the proposed optimization processes to 
the sub-problems, such as, (1) data 
representation of heterogeneous data types, (2) 
feature selection and extraction from 
heterogeneous data, (3) aggregation of 
boundaries into geographic partitions based on 
feature similarity, (4) error evaluation of multiple 
geographic partitions and (5) visualization of 
heterogeneous data within a geographical 
context. The proposed system is illustrated with 
elevation and forest label raster data, US Census 
Bureau boundary data and FBI crime reports for 
making decisions about police force deployment. 
 
Keywords: Mining geospatial data, decision 
support, geospatial clustering. 
 
 
 

1 INTRODUCTION 
 
In general, there are many applications of data 
mining that require incorporating heterogeneous 
geographic information into analysis, for 
instance, farmer’s yield assessment, water 
quality analysis, merchandise store distribution, 
crime or disease control [1], [15], [20], [21]. In 
one particular case, designing a decision system 
for police force deployment would require data 
fusion of historical records about crime rates and 
criminals, with density of population and 
available police force, and geographical 
descriptors about land cover, land use, elevation 
and so on. Information fusion would be followed 
by formation of regions with geographic 
constraints using data mining techniques, then 
error evaluation of geographic partitions and 
visualization of the geographic results for the 
final decision about police force deployment. 
There are other application scenarios that would 
involve similar data analysis steps and would 
lead to geographic partitions derived from, just 
to name a few, farmer’s crop yields or West Nile 
virus occurrences. We present our overall 
approach and describe the proposed optimization 
processes to the sub-problems, such as, (1) data 
representation of heterogeneous data types, (2) 
feature selection and extraction from 
heterogeneous data, (3) aggregation of 
boundaries into geographic partitions based on 
feature similarity, (4) error evaluation of multiple 
geographic partitions and (5) visualization of 
heterogeneous data within a geographical 
context. 

The problem of geographic partitioning 
based on typical heterogeneous data types in 
Geographic Information Systems (GIS), such as, 
raster and vector data types, is described as 
follows. Search for the best partition of any 
geographical area such that the geographic 
partitions are (a) derived from raster and/or point 
information, (b) formed by aggregations of 
known boundaries, (c) constrained or 
unconstrained by spatial locations of know 
boundaries and (d) minimizing an error metric. 
While raster data types represent grid-based 
information collected by camera sensors, e.g., 
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satellite images, vector data types are used for 
representing boundary information, for example, 
man-made or naturally defined regions, or point 
information, for instance, building locations, 
customer’s permanent locations or measurement 
locations. The occurrence of heterogeneous 
geographic data types and the information 
associated with raster and vector data pose 
challenges to data analyses supporting decision 
makers in environmental preservation and 
development planning domains. In this work, we 
focus on the data analysis problem related to 
forming geographic regions as aggregations of 
basic boundaries under a set of decision support 
constraints.  

Although there are currently available a 
few Geographic Information Systems (GIS) 
software packages [3], [24] that can load, 
georeference and visualize some geographic 
information, we have not found a suite of 
software tools that would support all 
heterogeneous inputs, incorporate several data 
mining approaches and decision support 
constraints, and meet various geographic 
evaluation requirements. The motivation for our 
work came from the need to meet all application 
specified requirements (file format support, 
information fusion, variety of feature extractions, 
spatially constrained and unconstrained 
boundary aggregations and error evaluation) and 
the lack of currently available GIS tools to meet 
these requirements.  

We have approached the problem of 
geographic partitioning by decomposing the 
proposed decision support system into six basic 
components shown in Figure 1. These six 
components consist of five processing blocks, 
such as, (1) input information extraction and 
representation, (2) georeferencing data sets, (3) 
raster information extraction over defined 
boundaries, (4) feature driven boundary 
aggregation and (5) evaluation and decision 
making, and one visualization block that 
supports input and output data presentation to the 
decision making personnel.  

 
Figure 1: The top-level schema of the proposed 
system for geographic partitioning. 

 

 The proposed system for geographic 
partition was experimentally tested with the data 
sets including (1) raster data with continuous 
(digital terrain elevation) and categorical (forest 
label) variables, (2) vector data with 
geographical definitions of boundaries (US 
Census Bureau TIGER files and ESRI 
Shapefiles), and (3) tabular data defined per 
geographical boundary (FBI crime reports).  

In general, in order to build a system for 
geographic partitioning, one has to resolve 
several issues related to (1) the tradeoffs between 
efficiency of information retrieval and data 
storage, (2) georeferencing raster and vector 
data, (3) feature extraction from raster data over 
georeferenced boundaries, (4) aggregation of 
boundaries into geographic partitions based on 
feature similarity, (5) error evaluation and 
comparison of multiple geographic partitions and 
(6) visualization of raster and vector data, as well 
as, features and geographic partitions. The next 
sections will describe the above issues in more 
detail.  

 
2 INPUT INFORMATION 

EXTRACTION AND 
REPRESENTATION 
 
The overview of pre-processing 

functionalities and formation of output data types 
is presented in Figure 2 and corresponds to the 
“input information extraction and representation” 
component in Figure 1. While many of pre-
processing functionalities are self-explanatory 
based on Figure 2, we devoted extra attention to 
the problem of efficient information retrieval and 
data storage in Section 2.2. This problem also 
requires understanding of the underlying 
information that each data source conveys to the 
end-user as described in Section 2.1, particularly, 
the information in (1) Census 2000 Tiger/Line 
files defined by the U.S. Census Bureau and 
saved in TIGER file data structures and (2) shape 
files defined by the Environmental Systems 
Research Institute (ESRI) and stored in a LLS 
data structure. 
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Figure 2: An overview of input information 
extraction and representation component in 
Figure 1. 

2.1 Raster and Vector Data Information 
There are two basic data structures used in 
Geographic Information System (GIS). They are 
raster (or cellular) data and vector (or polygon) 
data structures [1, Chapter 15].  The use of both 
data structures in GIS applications is basically 
driven by memory efficient representations of a 
variety of GIS information that can be classified 
into a raster and vector based information. 
Examples of raster-based information would 
include terrain maps, land use maps, land cover 
maps or weather maps. Boundaries (or contours 
or outlines) of parcels, eco-regions, Census tracts 
or US postal zip codes would be examples of 
vector data.   

2.1.1 TIGER Files 
The Census 2000 Tiger/Line Files provide 

geographical information on the boundaries of 
counties, zip codes, voting districts, and a 
geographic hierarchy of census relevant 
territories, e.g., census tracts, blocks or block 
groups [2]. The boundaries also form a 
geographic hierarchy that is encoded in 
Tiger/Line files, e.g., census blocks form census 
tracts. It also contains information on roads, 
rivers, landmarks, airports, etc, including both 
latitude/longitude coordinates and corresponding 
addresses [2]. A detailed digital map of the 
United States, including the ability to look up 
addresses, could therefore be created through 
processing of the Tiger/Line files.  

Because the density of data in the Tiger/Line 
files comes at the price of a complex encoding, 
extracting all available information from 
Tiger/Line files is a major task. In this work, our 
focus is primarily on extracting boundary 
information of regions and hence other available 
information in Tiger/Line files is not described 
here. 

Tiger/Line files are based on an elaboration 
of the chain file structure (CFS) [1], where the 
primary element of information is an edge. Each 
edge has a unique ID number (Tiger/Line ID or 
TLID) and is defined by two end points. In 
addition, each edge then has polygons associated 
with its left and right sides, which in turn are 
associated with a county, zip code, census tract, 
etc. The edge is also associated with a set of 
shape points, which provide the actual form an 
edge takes. The use of shape points allows for 
fewer polygons to be stored. 

2.1.2 ESRI Shapefile 
A shapefile is a special data file format that 
stores non-topological geometry and attribute 
information for the spatial features in a data set. 
The geometry for a feature is stored as a shape 
comprising a set of vector coordinates in a 
location list data structure (LLS). Shapefiles can 
support point, line, and area features. Area 
features are represented as closed loop polygons  
A shapefile must strictly conform to the ESRI 
(Environmental Systems Research Institute) 
specifications [4]. It consists of a main file, an 
index file, and a dBASE table. The main file is a 
direct access, variable-record-length file in 
which each record describes a shape with a list of 
its vertices. In the index file, each record 
contains the offset of the corresponding main file 
record from the beginning of the main file. The 
dBASE table contains feature attributes with one 
record per feature. The one-to-one relationship 
between geometry and attributes is based on 
record number. Attribute records in the dBASE 
file must be in the same order as records in the 
main file. 

2.2 The Tradeoffs Between Efficiency 
Information Retrieval And Data 
Storage 

While the choice of raster type representation 
was exclusively driven by the efficiency of 
image analysis algorithms, our selection of the 
data structure was based on evaluations of the 
tradeoffs between efficiency of information 
retrieval and data storage.  

Our evaluation of the tradeoffs between 
efficiency of information retrieval and data 
storage is based on a comparison of TIGER and 
Shapefile internal data organizations. Shapefiles 
do not have the processing overhead of a 
topological data structure such as TIGER files. 
They have advantages over other data sources, 
such as faster drawing speed and edit ability. 
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Shapefiles handle single features that overlap or 
are noncontiguous. They also typically are easier 
to read and write. 

The TIGER file internal organization has 
significant advantages over other organizations 
in terms of storage space, but requires much 
processing before it can be retrieved. It is 
apparent that many boundaries will share the 
same border edges. These boundaries belong to 
not only neighboring regions of the same type, 
but also to different kinds of regions in the 
geographic hierarchy. A consequence of this is 
that storing the data contained in the Tiger/Line 
files in a basic location list data structure (LLS), 
where every boundary stores its own 
latitude/longitude points, would introduce a 
significant amount of redundancy to an already 
restrictively large data set.  

In contrary to apparent storage efficiency, 
the TIGER vector data representation is very 
inefficient for boundary information retrieval and 
requires extensive processing.  From a retrieval 
standpoint, an efficient representation would 
enable direct recovery of the entire boundary of a 
region as a list of consecutive points. The 
conversion between the memory efficient 
(concise) and retrieval efficient forms of the data 
is quite laborious in terms of both software 
development and computation time. 

We have designed a new data structure 
called Hboundary to accommodate an efficient 
tradeoff between information retrieval and 
memory usage when a set of 
polygons/boundaries provide complete, non-
overlapping coverage of a region (such as 
counties covering a state), and/or there are 
multiple types of boundaries that fall into a 
hierarchy (such as all state boundaries are also 
county boundaries, and all county boundaries are 
also Census Tract boundaries).  The efficiency is 
accomplished by having one master list of 
boundary points that all boundaries reference by 
pointers. Given that in the Java programming 
language, integers, which are used as the 
pointers, are 32 bits, and double precision 
floating point numbers, two of which are used 
for each geographical point (latitude and 
longitude), are 64 bits, the memory savings for 
each point that is shared by two county, two 
census tract, and two block group boundaries is 
30 bytes. For the state of Illinois, this 
optimization translated into a 38% reduction in 
memory usage, with HBoundary objects 
requiring 16.45 MB of memory to store its 
geographic point information while a 
representation that stores a copy of every point 

for every boundary would use 26.64 MB of 
memory. 

2.3 Information Representation 
Based on our previous considerations and 
studies, we have chosen BIP representation of 
raster data type and denoted the data structure as 
GeoImage Object in Figure 2 and including all 
georeferencing information associated with the 
raster data. All extracted information from 
TIGER files is stored in a novel HBoundary 
Object and is accessible to the system for 
additional information retrieval based on user’s 
needs. For the further processing of boundary 
information and visualization, the HBoundary 
Object is converted into a location list data 
structure (LLC) called Shape Object to maximize 
information access efficiency. Thus, Shape 
Object and Table Object in Figure 2 denote the 
data structures that represent geographical 
boundary information (Shape) and associated 
features per boundary (Table). In order to 
represent spatial constraints derived from 
proximity of boundaries, we formed a NBH 
Object that contains a list of spatial neighbors 
with variable length for each boundary and was 
extracted from the oriented edge list in TIGER 
files. 

  

Figure 3: Examples of raster files, elevation (left) 
and forest labels (right), represented by 
GeoImage Object. 

 
Figure 4: Extracted geographical boundaries of 
Illinois counties (left), zip code tabulated areas 
or ZCTAs  (second left), census tracts (second 
right) and census block groups (right) from the 
US Census Bureau TIGER files. The 
visualization here shows the information 
represented by Shape Object.  



 5

 
Figure 5: Table Object, for example, about FBI 
crime rate, represents Tabular information. 

 
3 EXTRACTING INFORMATION 

FROM RASTER DATA OVER 
DEFINED BOUNDARIES 

 
Given a raster data set and a vector data set 
defining boundaries, we address the problem of 
extracting information from raster data over a set 
of boundaries. The assumption of this problem is 
that the raster and vector data sets overlap 
geographically and both data sets are described 
by sufficient georeferencing information for data 
fusion. Information extracted from raster data 
should describe statistics of an ensemble of pixel 
values inside of each defined boundary. In this 
work, we extracted descriptive statistics, such as, 
sample mean, standard deviation, skew and 
kurtosis, from continuous variable raster data 
sets and frequencies of label occurrences (or a 
histogram) from categorical variable raster data 
sets. The overview of the functionalities for 
georeferencing and raster information extraction 
is presented in Figure 6. We will discuss issues 
related to georeferencing in Section 3.1 and 
raster information extraction in Section 3.2.  

 
Figure 6: An overview of “georefencing data 
sets” and “raster information extraction” 
components in Figure 1. 

3.1 Georeferencing Vector And Raster 
Data Sets 

Georeferencing, or geographic referencing, is the 
name given to the process of assigning values of 
latitude and longitude to features on a map.  
Latitude (lat) and longitude (long) describe 
points in three-dimensional (3D) space, while 
maps are inherently two-dimensional (2D) 
representations.  With the advent of computers, 
modern maps are usually stored as digital images 
since they represent raster information similar to 

2D image information. The steps involved in 
georeferencing a digital map image can vary 
among map image specification types, but the 
end result is the ability to retrieve the lat/long 
coordinates for any point on the georeferenced 
map. This capability is useful because the 
lat/long coordinates precisely define the position 
of an object on the Earth. 

Lat/long coordinates define a point on a 
3D model of the Earth, while map coordinates 
represent a pixel – a row and column location on 
a 2D grid obtained from projecting some 3D 
model of the Earth onto a plane. 2D maps are 
easy to display and facilitate distance 
measurement, while 3D coordinates are accurate 
but cumbersome and have no standard length for 
different degrees of latitude and longitude. The 
best way to define the position of an object on a 
map is with relative horizontal (column) and 
vertical (row) distances: “Three kilometers north 
of object A and two kilometers west of object 
B”.  In contrast, the best way to specify the 
position on a 3D sphere is with relative angular 
offsets: “Five degrees north and six degrees west 
of A”.  

A software package that can accept 
geospecific data and provide geographic 
referencing is called a Geographic Information 
System (GIS). One example of a GIS system is 
ArcGIS from ESRI [2], with components that 
include ArcView and ArcExplorer.  ENVI, the 
Environment for Visualizing Images from 
Research Systems, Inc. [6], and a suite of 
applications known as the USGS Mapping 
Science Software from the U.S. Geological 
Survey [3] are other GIS systems. 

There is nearly limitless information 
available describing georeferencing (see [8], 
[11], [12], [13], [14), but the level of 
understanding necessary to correctly 
georeference a single image can be rather 
daunting. The difficulty is due in part to the 
complications of projecting a three-dimensional 
surface, the Earth, onto a two dimensional 
object, a map. Understanding something about 
this process goes a long way towards 
understanding why certain parameters are needed 
to geographically orient a digital image.  

3.1.1 Classes of Georeferencing 
Transformations 

Given 2D and 3D coordinate systems, 
there are three possible classes of 
transformations. First, those that go from 2D-to-
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2D, bringing into alignment points that represent 
identical real-world locations. An example of 
this is multi-modal raster data fusion, for 
instance, the fusing of synthetic aperture radar 
(SAR) images with electro-optical (EO) or 
infrared (IR) images. In our work, we developed 
a tool for merging multiple digital elevation 
maps because the USGS data sets came on 
multiple CDs and any further processing 
required merging raster files with their 
associated georeferencing information. An 
example of this type of fusion is shown in Figure 
7, where the fused raster file occupies 1.2 
GigaBytes of memory. 

 
Figure 7: The problem of fusing multiple raster 
files (left and middle) with elevation information 
into one file (right).  

  The second class of transformations, 
3D-to-3D, is used for information integration 
such as the synthesis of road network and river 
information. The direct use of this type 
transformation under our development was for 
fusing boundary information over multiple states 
(see Figure 8). 

  
Figure 8: The problem of fusing multiple vector 
files (left and middle) describing county 
boundaries of Illinois and Indiana into one file 
(right). 

The third class of transformations 
operates between 2D and 3D coordinates. 
Identifying the location of water wells defined in 
3D lat/long coordinates on a 2D digital terrain 
map is an application example in this class of 
transformations.   The transformations across 
coordinate systems of different dimensions, 
where one of the coordinate systems represents 
the Earth, are also called geo-registration. In our 
work, we focused primarily on the third class of 
transformations, those that support 
georeferencing maps (2-D raster data) with 
contours or boundaries of regions (3-D vector 

data) in order to extract raster statistics over a 
defined set of boundaries. An example of this 
type of georeferencing is shown in Figure 9. 

 
Figure 9: An example of georeferencing the 
Illinois elevation map with Illinois county 
boundaries and overlaying the boundary 
information (green) over the elevation map. 

3.1.2 Georeferencing Coordinate 
Transformations 

The georeferencing system is built around 
coordinate transformations to and from three 
types of location representations: 2D map pixels 
(column and row), 3D lat/long coordinates, and 
2D UTM values.  These transformations are 
shown in Figure 10.  

 

 
Figure 10: Types of coordinate transformations. 

The motivation for the transformations between 
2D map and 3D lat/long coordinate systems is 
fairly obvious, because one would like to know 
the lat/long values of any pixel in a 
georeferenced image.  The third location 
representation, the Universal Transverse 
Mercator (UTM) coordinate system, is a 
Cartesian coordinate system developed by the oil 
industry. It is useful for specifying a number of 
points on a map without having to refer to 
latitude and longitude. Furthermore, UTM values 
facilitate metric distance calculations, which are 
difficult in lat/long coordinates where the 
distance between two adjacent degrees is 
dependent upon their location relative to the 
equator and the prime meridian.  In UTM 
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terminology, the horizontal (x) value is called 
easting and the vertical (y) coordinate is called 
northing.  A UTM coordinate pair is called a 
northing/easting value. The details about the 
used set of equations and user’s interface can be 
found in [16] and [17].  

3.1.3 Sources of Georeferencing 
Information about Raster Files  

In order to perform the geographic referencing 
transformations correctly, a number of map 
parameters must be given along with the map 
data.  While some file formats were designed to 
contain georeferencing information, for example 
the ERDAS IMG file format, the file types of 
most digital maps were not designed to 
accommodate this metadata.   For these file 
formats, of which the Tagged Image File Format 
(TIFF) is one example, the metadata must be 
provided in some manner for the map to be of 
any use.   Although a number of approaches have 
been taken, the methods for including the 
metadata have not yet reached a point of 
standardization that enables a novice to quickly 
find the necessary information.   

In this section we describe how 
geographic referencing information can be 
extracted from TIFF, for example, from the 
forest label image shown in Figure 11. The 
georeferencing information extraction from TIFF 
world files (tfw) and/or private tags is based on 
the literature available in [6], [7], [9], [10]. The 
current solution for the TIFF format uses a 
combination of information extraction 
approaches that are based on three variants of 
TIFF files containing georeferencing 
information.  Assuming that sufficient data is 
provided in some combination of the three 
sources, we can use the georeferencing interface 
described earlier. The three TIFF file variants 
are:  

• One or more standardized files are 
distributed along with TIFF image data 
as .tfw and/or .txt files.   

• The metadata is encoded in the image 
file using private TIFF tags.   

• An extension of the TIFF format called 
GeoTIFF is used.   

Given multiple information sources, it is possible 
to read conflicting values for the same 
geographic field.  For example, tie points and 
resolution values can be specified in both the 

TIFF world file and the private TIFF tags. When 
both a tfw file and the private tags are present, 
the tfw values have priority. Some 
georeferencing information may be specified 
either in deg/min/sec or UTM meters.  In 
particular, if the information in private tag 33922 
is specified in deg/min/sec, Image To 
Knowledge (I2K) tools [5] will perform 
automatically the necessary transformation. 
Finally, in the absence of necessary information, 
some transformations will not be executed.  For 
example, if both the tfw file and the private tags 
33550 and 33922 are missing, Transformations 3 
and 4 cannot be performed.  
 

 

Figure 11: A TIFF image with forest cover labels 
(left) and its georeferencing information (middle) 
can be geo-registered with a shape file 
containing boundaries of Illinois counties (right 
image – Illinois falls within indicated rectangle). 

3.2 Raster Information Extraction 
In order to compute statistics from georeferenced 
raster files with boundaries, one has to establish 
a label image first. The label image defines a 
membership of each pixel (or raster location) to a 
boundary and is perfectly registered with the 
raster data. Statistics are then computed from all 
raster values that are labeled with the same label 
value in the label image. 

3.2.1 Constructing Label Image 
Given a set of 2D raster points and another set of 
boundary points in a pixel coordinate system, the 
goal of label image construction is to assign a 
unique label to all raster points surrounded by 
connected boundary points of each boundary. 
This problem can be solved theoretically in many 
ways assuming that (a) internal points of 
boundaries are known and are extracted from 
TIGER files, (b) a set of boundary points called a 
polygon [4] consists of one or more rings, (c) a 
ring is a connected sequence of four or more 
points that form a closed, non-intersecting loop, 
(d) a polygon may contain multiple outer rings 
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and (e) the order of ring points defines whether 
the ring delineates interior points (outer rings 
have clockwise order) or exterior points (inner 
rings or holes have a counter clockwise order).  

Although there are many approaches to 
this problem, the most robust approach is based 
on painting each ring separately, running 
connectivity analysis, forming a layered image 
with all result of connectivity analysis and 
assigning the same label to all pixels that were 
marked several times in the layered image. Other 
approaches, while fully justifiable in a 
continuous data domain, fail in a discrete data 
domain. Examples of label images are shown in 
Figure 12 and Figure 13. 

 

 
Figure 12: Georeferenced raster file of forest 
categories with boundaries of Illinois counties 
(left) and the corresponding label image (right) 
used for computing statistics. 

  
Figure 13: Georeferenced raster file of elevation 
data with boundaries of Illinois counties (left) 
and the corresponding label image (right) used 
for computing statistics. 

3.2.2 Computing Statistics from Raster 
Data Over Label Mask 

Given two images of identical size representing 
raster values and label values, we calculated 
statistics of all raster values labeled with the 
same label. In a case of categorical raster data, 
such as, the forest image with color labels for 
tree types, we computed occurrence of each label 
within a boundary (see Figure 14). In a case of 
continuous raster data, such as, the elevation 
maps, we computed sample mean, standard 

deviation, skew and kurtosis per boundary (see 
Figure 15). All computed statistics were saved in 
a tabular form (Table Object) and presented to an 
end user by mapping the range of resulting 
values into an intensity map of geographical 
boundaries. 
 

 
Figure 14:  Occurrence statistics computed for 
the forest image shown in Figure 12 and 
presented graphically (left) and saved in a tabular 
form (right). 

 

 
Figure 15: Descriptive statistics computed for the 
elevation image shown in Figure 13 and 
presented graphically. The images display (from 
left to right) the intensity mapping of sample 
mean, standard deviation, skew and kurtosis 
values per boundary. 

 
4 BOUNDARY AGGREGATION AND 

EVALUATION FOR DECISION 
MAKING 

 
In this section we describe the problems of (1) 
boundary aggregation given a set of boundary 
features (also called attributes) and (2) 
evaluation of boundary aggregations (also called 
geographic partitions) together with decision-
making based on comparative analysis. The 
schematic overview of this process is illustrated 
in Figure 16. 
 

 
Figure 16: An overview of “feature driven 
boundary aggregation” and “evaluation and 
decision making” blocks in Figure 1. 
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4.1 Boundary Aggregation 
In general, boundary aggregation can be 
formulated as a clustering problem with no 
spatial constraints [18] or as a segmentation 
problem with spatial constraints [19] on the final 
boundary aggregations. Merging spatial 
boundaries into boundary aggregations (or 
geographical geographic partitions) is driven by 
maximizing intra-partition similarity of features 
and inter-partition dissimilarity of features. 
Spatial constraints are defined such that the final 
aggregations must form spatially contiguous 
geographical partitions. 
 An aggregation process can stop if (1) a 
certain number of final partitions have been 
found or (2) a maximum user-specified intra-
partition dissimilarity value has been exceeded. 
The aggregation of two boundaries (any 
boundaries or spatially adjacent boundaries) 
takes place when the Euclidean distance between 
their features is less than a discretely 
incremented threshold value until one of the exit 
criteria is met. The output can be the last 
partition of the incremental aggregation process 
or several partitions obtained at multiple 
threshold values. This bottom-up aggregation 
process and the multi-partition output explains 
the method’s adjective hierarchical. 

We have developed the two hierarchical 
methods for clustering (no spatial constraint) and 
segmentation (with spatial constraint). The result 
of aggregation is stored in a tabular form, for 
example, Clust_Label0 in Figure 17 (right), and 
presented to an end-user in a visual form with 
respect to the geographical location of each 
boundary (see Figure 17, left). Results from 
clustering and segmentation can be easily 
visually compared as it is shown in Figure 18. 
Hierarchical results obtained as multiple 
intermediate outputs of the aggregation process 
are presented as a movie and typical results are 
shown in Figure 19. 

 

 
Figure 17: Hierarchical clustering of FBI crime 
data with the exit criterion being the number of 
clusters and the clustered feature being auto theft 
in 2000 leads to six aggregations that are 

geographically depicted (left) and the labels are 
stored in a tabular form (right). 

  
Figure 18: The results of hierarchical 
segmentation (left) and hierarchical clustering 
(right) of oak hickory feature with the exit 
criterion of 18 numbers of connected county 
aggregations.  

 

 
Figure 19: Hierarchical segmentation of 
extracted forest statistics (oak hickory 
occurrence) with two output partitions 
containing 43 (left) and 21 (right) aggregations.  
The feature for this example was extracted from 
the image shown in Figure 12. 

4.2 Evaluation and Decision Making 
Once multiple geographic partitions have been 
obtained, there is a need to evaluate each 
partition and make a decision about selecting the 
best partition according to some criteria. We 
have addressed this problem by error evaluation 
of each partition followed by comparative 
analysis.  

4.2.1 Error Evaluation of New Geographic 
Partitions 

In order to evaluate an error of a given 
geographic partition, it is assumed that the 
partition without any boundary aggregations had 
zero error. A partition formed by boundary 
aggregations will inherently introduce feature 
errors or deviations from the partition with no 
aggregations because aggregated boundaries are 
represented by a new feature value that might 
differ from the original feature values of un-
aggregated boundaries. However, if the cost of 
having and maintaining a large number of 
partitions is too high then the trade-off between 
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the number of partitions and the associated 
feature prediction error must be considered. 

An error evaluation can be conducted 
by using multiple error metrics depending on the 
application domain. We have developed several 
metrics defined in Equations below in order to 
provide a choice of metrics to end-users. The list 
of metrics includes absolute difference, variance, 
city block, normalized variance and normalized 
city block. 
 
 Variance metric: 

 
City Block metric: 

 
Normalized Variance Metric: 

 
Normalized City Block metric: 

 
where values are defined as 

 
 
and the notation corresponds to: 

 

4.2.2 Comparative Analysis 
In order to compare multiple partitions, there are 
two proposed approaches. First, a global 
prediction error is computed per each partition 
and the result error values are compared. For 
example, the results of clustering and 
segmentation with the sample mean feature of 
Illinois counties can be evaluated and compared 
as it is shown in Figure 20.  

Second, any prediction error can be 
viewed as a geographical error distribution since 
given any set of boundary aggregations the error 
varies with respect to a geographic location 
determined by the granularity of the underlying 
boundaries and their corresponding aggregations. 
Thus, the error distribution can be viewed as a 
sequence of geo-image where bright corresponds 
to a large error while dark means a small error. 

An example of geographical error distribution is 
shown in Figure 21.  
 

 
Figure 20: An example of global errors for 
multiple partitions obtained by clustering and 
segmentation of terrain elevation attribute of 
Illinois counties. 

 

 
Figure 21: Geographical error distribution for the 
results presented in Figure 20. From left to right, 
geographical error distribution for the partitions 
with 37 (Eval# 0 Clust_0), 25 (Eval# 1 Clust_1), 
35 (Eval# 2 Seg_3) and 26 (Eval# 3 Seg_4) 
aggregations. 

In order to compare prediction errors 
computed for a specific region from several 
partitions, one could inspect computed errors 
from all partitions as a function of boundary 
indices. This type of comparative analysis is 
facilitated by the appropriate visualization and 
color-coding each partition differently. An 
example is illustrated in Figure 22. However, the 
tacit assumption of this type comparison is that 
the aggregations are defined over the same set of 
underlying boundaries. This assumption can be 
violated, for example, if one would like to 
compare prediction errors at a defined location 
by latitude and longitude and the defined 
location was evaluated with counties and zip 
codes as the underlying boundaries. In this case, 
the prediction errors have to be mapped from one 
type of boundary to another type of boundary. 
This mapping can be accomplished by a simple 
image subtraction of images with geographical 
error distributions. 
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Figure 22: Comparative analysis of boundary 
prediction errors obtained from multiple 
partitions. 

 
5 VISUALIZATION 
 
It is apparent that visualization of input data, 
intermediate results and final geographic 
partitions plays a very important role in 
understanding of the input data and the obtained 
data mining results. We have presented 
throughout the paper visualizations of a variety 
of (1) raster (Figure 3), vector (Figure 4) and 
tabular (Figure 5) input data, (2) intermediate 
results, for example, overlaid georeferenced data 
(Figure 9), georeferencing information (Figure 
12) and label image of georeferenced raster and 
boundary data (Figure 13), and (3) final results, 
for instance, statistics of extracted features 
(Figure 14, Figure 15), geographical partitions 
obtained by single output clustering (Figure 17) 
and segmentation (Figure 18)  or multiple output 
partitioning strategy (Figure 19). We might 
develop in future a visualization tool for the 
neighborhood information (NBH Object). 
  
6 SUMMARY 
 
We have presented a decision support system 
using data mining methods and geographic 
information that forms geographic regions from 
GIS raster and vector data. The system 
development involved solving several research 
issues including (1) data representation (raster, 
vector and tabular information), (2) data fusion 
using key features (multiple tabular information 
sources) and using georeferencing information 
(raster and vector data), (3) extraction of 
statistics from continuous (terrain elevation) and 
categorical (forest labels) raster data sets, (4) 
development of boundary aggregation methods 
(with and without spatial constraints), (5) error 
evaluation metrics and comparative analysis of 
multiple resulting geographic aggregations. The 
described system has been applied to the 

problem of police force deployment. The 
developed approaches and software are currently 
being applied to hydrology [22] and water 
quality [15] applications to test the generality of 
the presented approach and the functionality of 
the developed software. 
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