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System Design Issues for Applications Using Wireless Sensor Networks 
 
 
Abstract 
In this report we present a summary of the system design issues for applications using wireless 
“smart” MEMS sensor networks. We give an overview of facts we learnt from previous work 
done in this field, the challenges we encountered and the different experiments we performed 
during a system design using wireless sensor networks. This report presents our preliminary 
findings and describes the application that we are developing. 
 
 
1. Introduction 
 
Sensor networks are an emerging area of mobile computing. Networked sensors represent a new 
design paradigm enabled by advances in micro electro-mechanical systems (MEMS) and low 
power technology. Created with integrated circuit (IC) technology and combined with 
computational logic, these ‘smart’ sensors have the benefit of small size, low cost and power 
consumption, and, the capability to perform on-board computation. The built-in support for 
wireless communication makes it possible to deploy them in remote, humanly inaccessible 
locations. This recent technological innovation has opened doors for new ventures into an 
unthinkably large number of useful application domains. We will describe one such application 
below. 
 
1.1 Problem statement and proposed solution 
 
We have focused on an application of the MEMS sensors for camera calibration.  There are 
many commercially available special cameras like the thermal infrared (IR) cameras, the 
hyperspectral cameras and visible and multi-spectral cameras. These cameras are useful in 
assessing the environment and analyzing it for hazards and other interesting or abnormal 
phenomena.  
 
In this report we describe our experiences while calibrating the thermal IR camera. A thermal IR 
camera reacts to temperature changes in the scene it is shooting. It gives different pixel values 
for hot and cold objects in its field of view. Consider a thermal camera capturing the aerial view 
of an agricultural field. The temperature of different parts of the field could be different and this 
knowledge would be beneficial to an agriculturist. If we could map any pixel value from the 
image of the field taken by the thermal camera, into a temperature value, then we could 
determine the temperature of each and every pixel of the field. Another possible application 
would be using the thermal camera for indoor hazard monitoring. The advantage of deploying a 
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thermal IR camera as opposed to a visible camera is that the visible camera would not sense 
spatially varying hazardous temperatures. The absence of light makes no difference in the 
operation of the thermal camera, which reacts mainly to temperature. Suppose the camera 
periodically captures images. These images are then displayed on a home-security inspector’s 
computer screen. The inspector will study these images to determine normal conditions. But, 
how sufficient is the image alone to distinguish a normal situation from an abnormal one? A 
body may be warmer (and brighter) than other things around it, but it may still not require 
immediate human attention as opposed to fire flames or extremely hot objects, etc.   
 
What would add great value to the utility of these cameras is a calibration for these cameras. 
Given a thermal camera image, how would one relate it to a particular temperature value? It is 
this calibration process that we are working on. More specifically, we want to develop a mapping 
that would allow us to usefully and reliably analyze the data from these cameras. 
 
One might wonder where and how the MEMS sensors come into the picture. To find a mapping 
of pixel values to temperatures, we looked for a small cheap temperature measurement device 
that we could place in the environment and receive readings from it. The MEMS sensors 
appeared as a good choice for this purpose. MEMS sensor boards have different sensing devices 
attached to them. These sensors could sense ambient conditions like temperature, sound, 
movement, luminance etc. For calibrating the thermal camera we will use the thermistor or the 
temperature sensor. The thermistor reads the ambient temperature and outputs a raw reading 
using the analog-to-digital converter (ADC) attached to the sensor board. The raw reading is the 
voltage across the thermistor. The higher the temperature, the greater the voltage value. The raw 
readings can be converted to engineering units (degree Kelvin, for example) using a formula 
specified in the data sheet provided the manufacturers of the thermistor. We will present the 
formula in a later section.  
  
The procedure for calibration of thermal IR images using MEMS sensor readings can be 
described as follows: 

• Program MEMS sensors  
• Place the sensors in a room and focus the thermal camera to capture images of the points 

where the sensors are placed.  
• Synchronize MEMS sensors and thermal IR camera 
• Collect wirelessly MEMS readings over time 
• Collect thermal IR images over time 
• Convert the raw ADC values from the MEMS sensors to engineering units (ºC) using the 

conversion formula (given in a later section). 
• Identify MEMS sensor locations in a corresponding thermal IR image to obtain pairs o 

MEMS & thermal IR pixel values. 
• Establish the mapping between the thermal IR pixel values and MEMS temperature 

values and calibrate the thermal IR image. 
 
The above description sounds quite straightforward but it is only a bird’s eye view of the actual 
work we had to do in order to get the desirable outcome. The report is structured as follows: We 
start by describing the MEMS sensors in Section 2. This includes laying out the specifications of 
the sensors we worked with, the on-going work in the research community for possible 
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applications of these sensors, and, the issues we learnt both from the wireless sensor literature 
and our own experiences.  We then move on to more specific topics that we had to handle for our 
application.  Section 3 describes the issues in acquiring and analyzing data from the thermal 
camera. Section 4 presents the issues related to using the camera together with the sensors. 
Section 5 explains the experiments we conducted for calibrating the camera and the results 
obtained. Finally, we draw our conclusions in Section 6 and discuss the direction for future work. 
 
2. MEMS sensors 
 
This section describes the MEMS sensors.  It gives the sensor specifications and some details of 
the software suite used to programme the sensors. It also enlists some prototype sensor network 
applications, followed by the problems faced by sensor applications. The proposed solutions to 
some of the problems can serve as guidelines for future application design. Finally, it discusses 
in detail the challenges specific to our application. In this report we will use the term sensor 
‘mote’ and sensor ‘node’ interchangeably. ‘Mote’ is a commonly coined term in MEMS sensor 
literature. 
 
2.1 Sensor specification 
 
In order to understand the capabilities and limitations of MEMS sensors, we need to know the 
specifications of the sensors [1]. The sensors that we used for this study were bought from 
Crossbow Technology Inc. [2]. Our sensors were mounted on MTS101CA [3] sensor board (see  
Figure 1). The MTS101CA series sensor boards have a precision thermistor and a light/photocell 
sensor. A sensor board must be attached to a board, a MICA mote in our case (see Figure 2), 
which makes the computational power and wireless capabilities available to the sensors. The 
Mica board specifications are: 

 Plug-in sensor boards like the MTS101CA, attached through a 51-pin expansion 
connector. 

 TinyOS (TOS) operating system. 
 4MHz Atmega 128L processor. 
 128K bytes Flash, 4K bytes SRAM and 4K bytes of EEPROM. 
 916MHz radio transceiver with a maximum data rate of 40Kbits/sec. 
 Attached AA (2) battery pack. 

 
According to the data sheet for the thermistor on MTS101CA [3], the raw reading from the ADC 
can be converted to degrees Kelvin with accuracy of ±0.2 Kelvin and using the following 
approximation over 0-50 ºC: 
  

1/T(K) = a + b*Ln(Rthr) + c*[Ln(Rthr)]^3  
where: 

Rthr = R1(ADC_FS-ADC)/ADC 
a = 0.001010024 
b = 0.000242127 
c = 0.000000146 
R1 = 10K 
ADC_FS = 1024 
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ADC = output value from sensor’s ADC measurement. 
 

Temperature in º C = (Temperature value in Kelvin) – 273 
 
Figure 1 shows a MICA board. Figure 2 is a block diagram of the board shown in Figure 1. 
 
 

 

 
 
 
 
 
 
 
 

Figure 1 Mica Board for MTS101CA             
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
                               Figure 2 Block Diagram of Mica Mote 
 
A Mica mote may cost (depending on the set of sensors attached to it), around 100 – 300 dollars 
and is about 4 inch by 2 inch by 1 inch in size. The computational, communication and sensing 
features together with the low cost and size make these MEMS sensors a very attractive 
alternative to their traditional counterparts. However, all the above capabilities have severe 
limitations. Sensors motes have limited processing and storage capability. Moreover, since AA 
batteries supply power to sensors, power becomes an expensive commodity. These limitations 
heavily influence any sensor application design and will be discussed in detail in the next 
section. 
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Sensor applications can be built by programming the sensors using a parallel port. MICA motes 
are programmed with TinyOS [4] code. TinyOS is an open source software platform developed 
by researchers at UC Berkeley and actively supported by a large community of users. It is a 
small operating system that allows networking, power management and sensor measurement 
details to be abstracted from core application development. TinyOS is optimized for efficient 
computational, energy and storage usage. The key to TinyOS’s functionality is the NesC 
(network-embedded-systems-C) compiler, which is used to compile TinyOS programs. NesC has 
a C like structure and provides several advantages such as interfaces, wire error detection, 
automatic document generation, and facilitation of significant code optimizations. One of its 
major goals is to make TinyOS code cleaner, easier to understand, and easier to write. 
 
TinyOS consists of a tiny scheduler and a graph of components [5]. A component has a set of 
‘command’ and ‘event’ handlers. An event is like an interrupt sent from one component to 
another informing that something of interest to the receiver has occurred. For example, once an 
application’s component has set the Timer component for a particular interval, the Timer 
component will inform the application through the ‘Timer.fired()’ ‘event’, when the specified 
interval is over. Conversely, a component can invoke another component’s functionality using 
the callee component’s ‘command’ interface. An application would be using the command 
‘setTimer()’ of the Timer component to use the timer functionality.  
 
This clean abstraction allows rapid code development. Application development then involves 
plugging your components with the already implemented components - specifying how they will 
be linked to each other, that is, which component will invoke what command and which 
component will signal another about what events. This linkage is specified in a configuration 
file, which is one of the two files for any TinyOS component.  The other file is the module file 
that contains the actual code for an application.  Writing code is fairly simple if one has some 
basic knowledge in C programming.  
 
TinyOS events are non-preemptive and are always run to completion. Thus, they must only do a 
small amount of work before completing otherwise they will stall the rest of the processing. In 
order to perform longer processing operations, TinyOS introduces a scheduling hierarchy 
consisting of ‘tasks’ and ‘events’. Tasks are used to perform longer processing operations, such 
as background data processing and can be preempted by events. However, one task cannot 
preempt another task. Thus, a task should not spin or block for long periods of time.  If one needs 
to run a series of long operations, one should have a separate task for each operation. 
 
Keeping energy conservation in mind, the processor has three sleep modes: ‘idle’ which just 
shuts the processor off; ‘power down’, which shuts everything off except the watch-dog; and 
‘power save’, which is similar to power-down, but leaves an asynchronous timer running. Power 
consumption equates to battery life. Long battery life is desired, and in some applications, one to 
five years is required. The processors, radio, and a typical sensor load consume a power of about 
100 mW. This figure should be compared with the 30 µW drawn when all electrical components 
are inactive (in sleep mode). The overall system must embrace the philosophy of getting the 
work done as quickly as possible and then going into sleep mode. 
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While writing an application code, care must be taken in terms of power, CPU and memory 
usage. One should avoid writing too complex programs. The TinyOS architecture and scheduling 
policies must be kept in mind to write ‘efficient’ and ‘correct’ code. Careful planning and coding 
will lead to better application development and deployment. Appendix A presents a 
troubleshooting guide to some specific problems we faced during our work on the sensors. 
 
2.2 Application domain 
 
Sensor networks are revolutionizing the information-gathering process. Their low costs and 
small size make it possible to deploy them in large numbers, in inhospitable physical conditions 
such as remote geographical locations, toxic areas or less accessible places like machine 
interiors. The primary purpose of sensor networks is to sample the environment for sensory 
information and propagate this information wirelessly to bigger processing units or base station. 
There are many applications for wireless sensor networks [6] [7]. Some are new; others are 
traditional sensor applications that can be improved using wireless sensors. The overall list of 
applications includes:  
 

 Physical security for military operations – for example, motion detection through 
accelerometer sensor for enemies’ army movement tracking in a battlefield. 

 Environmental data collection – for example, habitat monitoring, bird/animal call 
recognition or tree temperature monitoring. Sensors are programmed with waveforms of 
bird and animal calls of interest. Sensors sense the environment and compare a 
bird/animal call with the one of interest. If there is a match, this information is passed 
wirelessly to the central processing unit. 

 Seismic monitoring using a magnetometer. 
 Industrial automation – sensors could keep track of the inventory levels and send signals 

to the base station if the inventory level goes below a specific level. 
 Future consumer applications, including smart regulation of utilities at homes or 

detecting intruders. Sensors in such applications could help in detecting anomalous 
situations, or could simply be used to link different household devices.  For instance, if 
we programme the sensors to detect high temperatures, they could wirelessly 
communicate with another device (say, a robot) to switch on the air conditioner. If 
sensors detect abnormally high temperatures, they could detect it as a fire and take action 
accordingly. 

 
Though all these applications seem very appealing and useful, they are still in the early stages to 
development. A lot of barriers and challenges in wireless sensor networks have to be overcome 
in order to make the above applications successful. The next section points out of the difficulties 
encountered by the sensor network research community. 

 
2.3 Challenges  
 
In this section we will enumerate the challenges faced by any application in wireless sensor 
networks and discuss the solutions proposed in the sensor networks literature to work around 
these problems. The solutions vary from being wireless networking decisions to application 
design decisions. The proposed solutions form the foundation of any robust wireless sensor 
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application. We also present the issues that are specific to our application. We should mention 
that the major challenges come from ad-hoc (multi-hop) networking and therefore we have 
focused first in our experimental work on single-hop networking operation scenarios. 
 
 
2.3.1 Power constraints 
 
Power remains to be the most valuable resource for a functional mote. Without power, 
everything, from communication, sensing to computation will come to a standstill. Even after 
careful coding and use of sleep modes when the sensors are idle, as discussed earlier, one must 
come to terms with the lifetime of a sensor mote, operating on a 3V power source, typically two 
AA batteries. Sooner or later the battery will run out of power, making the mote ineffective. The 
sensors will be deployed in remote areas, and so, rejuvenating them with new batteries might not 
always be an option. Since, losing a mote would mean loss of information from that part of the 
sensory field, it is important to introduce redundancy in the network. Even if one mote dies out, 
there should be others that still keep the network up and running. Redundancy is also crucial due 
to a mote’s susceptibility to failure. It is hoped that one day, these motes would become so 
inexpensive, that discarding them, once they become inoperable due to power dissipation or 
failure, will be a cheaper alternative than repairing them. Along with redundancy, one needs a 
self-configuring network infrastructure. The network routing protocols should be such that the 
failure of one intermediate forwarding node should not deter other motes from communicating 
with the central station.  
 
Power is consumed by the radio for receiving and transmitting messages. Transmission failures 
due to collisions in the network result in power wastage because the motes have to retransmit the 
same message until it is successfully delivered. Therefore, routing strategies are required and a 
network stack is desirable in order to minimize collisions and save power. There are numerous 
protocols to minimize energy wastage in message transmission. PAMAS [8] and S-MAC [9] are 
some commonly cited protocols that are variants of the MACAW protocol (used in traditional 
wireless networking domain). Traditional networking protocols require handshaking mechanisms 
between the sender and the receiver before the actual data transmission, e.g., RST 
(RequestToSend) and CTS (ClearToSend) signals. They also require motes to listen to the 
channel and only use it if the channel is free. Both these techniques are wasteful for sensor 
networks. Sensor network protocols suggest careful and limited use of handshaking, as 
transmissions are very energy intensive. They also suggest minimizing idle listening. A mote 
should put itself to sleep if it finds that the channel is busy, meaning the mote cannot anyway 
transmit.  
 
Another term coined in the sensor network literature is ‘data-aggregation’. Instead of each mote 
sending its own packet, intermediate motes can aggregate (e.g. averaging all packet values or 
doing duplicate detection and suppression) packets from their neighbors thus reducing the 
number of transmissions flowing towards the final destination. Reduced transmissions mean 
decreased possibility of collisions, which in turn gives energy savings.  
 
In short, we need robust and energy aware routing protocols and application designs. 
Applications should be able to tolerate some amount of failure. They can extend the lifetime of 
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motes using techniques like data aggregation, at the cost of some delay introduced by the 
processing at the intermediate nodes.  
 
2.3.2 Memory and CPU constraints 
 
Another important issue to consider is memory and CPU constraints. Instead of allowing large 
amounts of data to be stored in sensor motes, applications should let motes forward small 
amounts of data towards the base station or the central processing unit. Some research papers 
suggest that we should avoid using the motes for complex computations. The motes should 
primarily collect information from the environment and do some minimal amount of 
calculations, like duplicate data detection or filtering of uninteresting events. A more powerful 
central processing station must handle computationally intensive tasks with the tradeoff of 
network transmission.  
 
2.3.3 Application specific issues 
 
While working with the MEMS sensors for our application, we have encountered a few 
interesting issues.  Some of them were: (1) setting up the sensor network, (2) synchronizing the 
sensors, (3) time stamping the sensor readings, (4) data collection schemes, (5) MEMS sensor 
calibrations and (6) network evaluation approaches (a) by determining the rate of readings lost 
due to collisions during transmissions, and (b) by finding the extent to which factors like number 
of sensors, distance from base station, presence of other wireless devices, etc could affect data 
losses in our experimental setup. We tested different ways of collecting data from the sensors to 
find which one best suited our application. Each of these issues is addressed below. 
 

2.3.3.1 Sensor network setup 
 
The camera calibration application needs the sensors to be set up in an indoor environment. One 
of the sensors would be attached to a PC through a serial port. This sensor will be the base 
station, collecting data wirelessly from other sensors and forwarding it to the PC using the serial 
port. Other sensor motes would continuously sense the ambient temperature and record a 
temperature value after every 100 milliseconds.  We chose to store a maximum of 10 readings on 
a mote because of our concern for limited memory on the motes. Also, owing to the fact that a 
larger packet has a greater chance of getting corrupted through collision, we preferred 
transmissions of smaller packet sizes. Since our camera calibration experiments were confined to 
a relatively small laboratory, we used a ‘single hop’ sensor network to relay data from a sensor 
and the base station. Depending on the scheme used for data collection (discussed later), a sensor 
would send a packet containing 10 readings to the base station sensor. The base station will 
forward the data to the PC that will save this data to file for interpretation and analysis later.  
 

2.3.3.2 Synchronizing the sensors  
 
Synchronization of the sensors is a critical need of most applications and has several 
implications: (i) Starting the sensors at the same time allows us to correlate the readings of one 
sensor with another on a temporal domain. (ii) Instead of a sensor starting to sense the ambience 
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the instant it is switched on, it is a better design if sensors wait for a signal to start. The base 
station could signal the sensors to start, when it is ready to receive data from the sensors. This 
will lead to huge energy savings, as it will eliminate the scenario where the sensors are sensing 
the environment and transmitting data when the base station is not even interested in the data. 
(iii) Synchronization is not just limited to synchronization among the sensors in the sensor 
network. A sensor network may be juxtaposed with other devices, for example, cameras. As with 
our application, we want to relate the thermal camera images to sensor readings, in which case, 
both the camera and the sensors must be synchronized together. 
 
We handled the issue of synchronization by instructing the sensors to wait for a ‘RESET’ signal 
from the base station. Until they receive this signal, they do not start sensing the environment. 
The base station broadcasts the ‘RESET’ message. Once this message is received, a sensor starts 
sensing the ambience.  
 
Theoretically, the precision to which the nodes are synchronized with each other depends on the 
possible sources of synchronization message latency – send time, access time, propagation time 
and receive time [10], [11]. If we only consider propagation time, then inter-node 
synchronization can be estimated as follows. Suppose the propagation delay of RESET message 
from the base station to a node is ‘p’ time units. Then, if all sensors are placed at an equal 
distance from the base station, they will get the RESET message ‘p’ time units after it is 
broadcast from the base station. Thus they will all be perfectly synchronized. If the sensors are 
placed at varying distances from the base station, they would get the RESET message between 
pmin and pmax time units, where pmin is the propagation delay to the closest sensor and pmax is the 
propagation delay to the farthest sensor. In this case, the nodes would be synchronized within a 
bound of ‘pmax – pmin’ time units.  
 
Another hurdle for synchronization is clock-drift. The hardware clocks on different nodes may 
count time at slightly differing rates. With progressing time, a particular sensor may be far ahead 
or behind some other sensor. This factor, together with the slight propagation delay of the 
synchronization message (as described above) can lead to a significant offset between different 
sensor timers, thus making them out of sync. A simple solution to rectify this asynchrony is by 
specifying an upper bound ‘E’ for this asynchrony, and re-synchronizing the sensors at time ‘t’, 
after which the error goes beyond ‘E’. If we know the clock drift rate ‘d’ (a clock manufacturer 
specified value), propagation delays pmin and pmax and the error bound ‘E’, calculating ‘t’ is 
straightforward.  
 
Let tdiff = pmax - pmin. In the beginning, a node may be (tdiff(1 ± d)) time-units out of sync with 
another node. After t time units, the maximum time units a node may be out of sync with another 
node is (tdiff(1 ± d))  ±  (2td). Bounding this by E, where 0 < E < 1, we get |(tdiff (1 ± d))  ±  (2td)| 
< E. Solving to get an upper bound, we get t < (E-(tdiff (1+ d)))/2d. This gives the maximum 
value for t after which the nodes become asynchronous and need to be re-synchronized.  
 

2.3.3.3 Time stamping sensor readings 
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Time stamping helps in useful data analysis. Sensors do not have any notion of clock time, which 
is available on bigger computational devices – like the day and time information available on our 
mobile phones or PCs. However, sensors do have a timer, which can be programmed to start at 
some instance and then repeat after a fixed interval.  
 
In order to time stamp a sensor’s readings, we start the timer on each sensor when we are 
synchronizing the sensors with the RESET message. The timer is set to send an event every 100 
milliseconds. Subsequently, we maintain a counter (called ‘count’) that is incremented by one, 
after every timer interval. This counter will give us the time relative to the timer start time. A 
counter value of 10 would thus mean that 10 * 100 = 1000 milliseconds have elapsed since the 
start of the timer. Moreover, since all the sensors start their timers at the same time (when they 
are synchronized) a counter value of ‘c’ on two or more sensors would refer to the same time 
instance.  
 
This counter value is copied into the packet sent to the base station. We realize that sending the 
counter value wirelessly to the base station consumes bandwidth, but it is important to do so, so 
that we can correlate a set of readings. It also insures that the base station only records readings 
in increasing order of time and drops readings that appear late. Also, it helps in evaluating when 
readings were lost (described later) and compare readings taken at the same time instance on 
different sensor nodes. We do try to save bandwidth by transmitting a single counter value for all 
the readings in a packet instead of sending a counter value for each reading in the packet. We are 
able perform the bandwidth saving because of the specific manner in which we programmed our 
sensors. We implemented our time stamp logic as follows:  
 
As per our setup, we maintain 10 ‘consecutive’ readings in the local array on a sensor, before 
sending a packet with those 10 readings to the base station. As soon as a packet is transmitted, 
the local array is emptied out. While recording the first value into the array, the current ‘count’ 
value is stored in a separate variable, say ‘saveCount’. While preparing a packet to be sent to the 
base station, ‘saveCount’ is copied into a counter field in the packet. This field gives a timestamp 
for each value in the packet. To understand this better, let us suppose that a packet has not been 
sent yet. When the first reading of that packet is being stored in the sensor’s local array, we 
would note the counter ‘count’s current value, say ‘v’, into ‘saveCount’. If the timer interval is 
100 milliseconds and if ‘v’ is 100, it means that the first reading of the packet was recorded 100 
* 100 = 10 seconds since the start of the sensor mote’s timer. Since a packet contains contiguous 
readings, the next reading will automatically be 101 * 100 = 10.1 seconds after the start and so 
on. 
 

2.3.3.4 Data collection schemes  
 
For our application of camera calibration, we required a simple data collection approach that 
would ensure the least amount of data loss in transmissions to the base station. We thus 
evaluated two different mechanisms for collecting data from the sensors. They are: 
 
• Autosend mode: in this mode, a sensor would send a packet to the base station as soon as it 

had 10 readings in its local array. Ideally, a sensor would transmit a packet for the 
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temperature readings and a packet for the luminance readings after every one second (100 
milliseconds/reading * 10 readings/packet = 1 second/packet).  

• Query mode: In this scheme, a sensor still continuously senses the environment, but it does 
not send data as soon as it has the fixed number of readings in its local array. Instead, the 
base station queries each sensor mote in a round robin fashion. When a mote receives a query 
message from the base station, it checks to see if a packet with 10 readings can be sent. If 
yes, it is sent immediately. Otherwise, it simply sets a local flag indicating that the base 
station query is pending. When 10 readings have been collected, if the base station query is 
pending, a packet with the readings is sent. There is a catch in this scheme. If a mote does not 
have 10 readings when the base station queried it and it sends the packet later, when the 10 
readings were ready, then it may collide with another mote’s transmissions. However, we try 
to limit such a scenario by making the base station wait for a queried node’s response for a 
finite amount of time, before it queries the next sensor. It is hoped that a mote would have 10 
readings by then.  

 
There are reasons why we choose the above two schemes. The ‘autosend’ mode is appealing 
because of its simplicity. Each node works as an independent unit and transmits a packet to the 
base station whenever a packet worth of data is ready. The base station too has no other 
responsibility than to collect and log data flowing towards it. However, since there is no control 
on any node’s transmissions, there are bound to be collisions. That is the reason why we came up 
with a contrasting scheme – the ‘query’ mode, where we can control a node’s transmission to a 
certain extent.  
 

2.3.3.5 Network setup evaluation approaches 
 
There were several possible ways to set up our sensor network. However, we wanted to find the 
most effective sensor network setup that could be deployed to collect data for our camera 
calibration experiment. A network setup was considered superior to another one if it incurred 
fewer data losses. For this reason, we conducted several experiments, each to determine different 
factors and the extent to which they can lead to data losses in the network. In this section we 
outline our approach in estimating the data losses. We also define the granularity of the 
experiments we conducted. 
 

2.3.3.5.1 Determining the amount of data lost 
 
While comparing two or more sensor network setups, we take into account the data loss in each 
of them. We believe that apart from the data lost during initial startup and stabilization at each 
sensor node, all other data losses are attributed to collisions during transmission. A packet 
corrupted during transmissions is discarded at the base station.  
 
All data losses are calculated on the PC that finally logs the data from all the sensors. A program 
on the PC starts tracking the losses as soon as base station sends the RESET message to 
synchronize and start the sensor nodes. Data loss is measured in terms of the total number of 
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missing readings, from all the sensor nodes. Detecting losses is based on the following 
observation: 
 

If, on the PC, the previous packet from mote ‘a’ had a counter value of ‘x’, then the next 
packet from ‘a’ should have a counter value of ‘x + 10’, since the previous packet 
contained 10 readings. If however, the next packet counter ‘y’, is greater than ’x + 10’, 
then the readings for counter values between ‘y’ and ‘x + 10’ are missing i.e., ‘y – (x + 
10)’ readings are considered lost.  

 
In short, the readings lost are determined by observing the counter value in a packet with respect 
to the previous packet’s counter value from the same mote. A gap in the counter value could be 
due to a packet lost in transmission, readings lost on a mote itself due to factors like stabilization 
during initial startup. From our present understanding of the TinyOS radio and network stack, we 
believe that if a packet gets corrupted, then all readings are dropped. Thus, readings lost due to 
packet corruption through collisions will be a multiple of the number of readings in a packet (10 
in our case). However, readings lost on a mote need not be a multiple of the number of readings 
stored in a packet.  
 
At the end of the experiment, the data loss is calculated as a percentage of missing readings, 
which is the ratio of the total number of missing readings from all the motes, to the total number 
of (missing + correct) readings from all motes. 
 

2.3.3.5.2 Granularity of experiments 
 
In order to infer the best network design for an application, there are several parameters to 
consider and test the data losses against. Our experiments measure the data losses as a function 
of the following: 
 
a. Number of sensor nodes – the number of nodes in the network is increased from 1 to 7 nodes. 
b. Spatial Arrangement of the sensors. There were three mote arrangements that we tried to 

compare and evaluate. They were: 
• Nodes arranged in a ‘straight-line’ and within 10 to 15 inches from the base station and 

about 3 inches from each other.  
• Motes arranged in a ‘circular’ fashion around the base station with a radial distance of 10 

inches between the base station and a mote. This is an arrangement where all nodes are 
equally close to the base station. 

• Nodes scattered in a ‘random’ fashion in the laboratory – at a distance anywhere from 10 
inches to 150 inches from the base station. 

c. Data collection technique – autosend versus the query mode of data collection. 
d. Distance from the base station – the mote distance was increased gradually up to the 

maximum range of transmission (about 70 feet). 
e. Interference from other devices – the sensor node’s transmission was tested in the presence 

of other devices that could possibly interfere with the sensor network transmissions.  
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At this stage, we have only pointed out the reasons for data losses common to the two schemes 
of data collection. There may be a few data loss factors specific to a particular scheme, but we 
will elucidate them while analyzing the results for each scheme.  
 
We measured the data losses for varying number of motes and different spatial arrangements in 
conjunction with the two data collection techniques (autosend and query modes). The 
experiments for the last two parameters - distance from the base station and interference from 
other devices, were then performed only with the best data collection scheme.  
 

2.3.3.6 Sensor network experimental results and analysis 
 
We will first analyze the two data collection schemes individually against the three sensor node 
layouts we mentioned above. In each experiment, we started with one node and went up to seven 
nodes. The distance and interference experiments are only conducted with the best data 
collection scheme. It must be noted that all sensor nodes have similar battery power. All nodes 
were provided with fresh batteries at the start of the experiment. This is important to mention, as 
battery power will finally determine the strength of data transmissions and receptions. 

2.3.3.6.1 Autosend Mode of Data Collection 
The graph in Figure 3 shows the percentage of readings lost as a function of increasing number 
of motes for each of the three mote arrangements, for ‘autosend’ scheme of data collection. 

    

0

5

10

15

20

1 2 3 4 5 6 7

Number of sensor nodes

%
 r

ea
di

ng
s l

os
t 

circular straight-line random

 
Figure 3 Percentage of readings lost in autosend mode 

 
From Figure 3, we note that in all the sensor network layouts, in general, the percentage of 
readings lost increases as the number of motes increases. The increase in the percentage of 
readings lost is gradual in the beginning but spikes drastically as we go on increasing the number 
of motes. This is because, the number of transmissions increases linearly with the number of 
motes. When the number of transmissions goes up, so does the probability of a collision and 
therefore the percentage of readings lost. In some cases, we notice that the percentage of 
readings lost decreases by up to 4% as we increase the number of motes. We think that this could 
be due to the random nature of the causes behind lost readings – collisions may occur in one run 
of the experiment and not occur in an identical run later. Wireless telephones and other devices 
in the laboratory that use the same radio frequency of 916 MHz could also be the reason for this 
randomness. We noticed that when a phone was in use, almost no packet was successfully 
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transmitted or received by the base station, irrespective of the number of sensor nodes in the 
network. 
  
As far as the mote layout is concerned, the circular arrangement seems to give minimum data 
losses in almost all cases. The random arrangement gives low data losses in some cases, but in 
other cases gives the highest losses.  
 
One might wonder why the data loss in autosend mode is not 100% since nodes are synchronized 
in the beginning and will send a packet with 10 readings simultaneously, every second. This 
could be credited to the CSMA [12], [13], a medium access control (MAC) protocol, which is 
implemented in the lower levels of the TinyOS and is responsible for transmissions. It could also 
be due to the loss of sync between the sensor nodes (described earlier). 
 

2.3.3.6.2 Query Mode of Data Collection 
 
The ‘query’ mode was described in Section 2.3.3.4. We have tried various modifications of the 
described ‘query’ mode. One of them was to allow a node to send only when the base station 
queries it and simply drop the query if there aren’t 10 readings on the node. This would reduce 
the collisions that result when a node sends data out of turn. We tested this method. Since we did 
not get promising results from this modification, we have not included the exact results of those 
experiments here. It will suffice to mention that the scheme did not guarantee lower readings 
losses because it needs perfect synchronization between a node and the base station. If a base 
station queries a node when the node does not have enough readings, the node will not be able 
send its data until it is queried again. There is yet another option whereby we send as many 
readings as are available on a mote when it is queried. This too has its flaw that there will be 
wastage of network bandwidth and a large number of transmissions will have packets less than 
half full. After trying these variations of ‘query’ mode, we decided to stick to the one described 
earlier. The base station waited for about 300 milliseconds after sending a query and before 
querying the next node.  
 
Figure 4. depicts the data losses in ‘query’ mode. We see the same trend in data loss as we saw in 
the autosend mode. The losses increase as the number of nodes in the network increase. 
However, a closer look at the numbers show that the percentage of loss is much greater in the 
query mode. In the query mode, apart from readings lost due to collisions, there is another latent 
reason that could be causing the large number of reading losses.  
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Figure 4 Percentage of readings lost in query mode 

 
Imagine a situation in the ‘query’ mode where a node has a packet with the required number of 
readings ready, but has not being queried by the base station. Since we have limited the amount 
of data stored in the local array on a node to 10 readings only, in the next timer interval, even 
though there is a reading to be stored, it is dropped. Readings are dropped until this mote is 
queried and the local array is set to blank again. The more the number of motes, the longer a 
particular mote will have to wait before it is queried, and thus more and more readings will be 
dropped. This would be a problem in any query mode operating in a continuous sensing 
application, unless we remove the limitation on the amount of data stored on a mote. 
 
Another problem occurs when the base station queries a node when it has just started filling its 
local array. This node will not have 10 readings in the 300 milliseconds for which the base 
station waits, before it queries another mote. In this case, this node will send the packet later, 
when is has 10 readings, increasing a possibility of collision with another mote’s transmission. 
 
In query mode, there does not seem to be a clear winner among the three different mote 
arrangements. All the arrangements give similar results for the ‘query’ scheme. It appears that 
the distance from the base station or the layouts do not affect the performance of the ‘query’ 
scheme as much as other reasons like wait-time before a mote is queried and collisions due to 
out-of-turn transmissions. 

2.3.3.6.3 Autosend Vs. Query Mode 
 
To get a clearer picture of the performance difference between ‘query’ and ‘autosend’ schemes, 
we have combined the graphs in Figure 3 and Figure 4 into one, in Figure 5. In Figure 5, all the 
three curves with high percentages of readings losses belong to the query mode. The percentage 
of readings lost in query mode is at least 10% higher than the readings lost in autosend mode. As 
the number of nodes increases, the losses in query mode shoot to about 50% while those in 
autosend stay around 15%. Thus, it is obvious that in terms of the number of readings lost, the 
autosend mode is far superior to the query mode. 
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Figure 5 Percentage of readings lost in autosend and query modes 

 
Intuitively, the query mode allows the base station to control data transmissions. The number of 
readings lost due to collisions should therefore be less in query mode as compared to autosend 
mode.  However, it seems that the ‘query’ mode introduces other causes for readings to get lost.  
 
Readings are mostly lost in ‘autosend’ mode due to collisions or initial startup stabilization. 
However, in the ‘query’ scheme a large number of readings seem to be getting lost either due to 
collisions and lack of synchronization between the base station and the sensor nodes. These 
‘query’ mode problems have been discussed in detail earlier.  
 
Another problem specific to the ‘query’ mode is if a node dies out in between. Since nodes are 
queried in a round robin fashion, the transmission slot of about 300 milliseconds for the dead 
node goes wasted. Not only that, at this time other motes may start loosing readings too. Such a 
failure has no affect on the ‘autosend’ mode, but adversely affects the ‘query’ mode. 
 
The experimental results in this section showed that autosend mode is better than query mode. 
Hence, for the next two sets of experiments we used the autosend mode for data collection. 
 

2.3.3.6.4 Distance from base station 
 
We now measure the data loss as a function of increasing distance from the base station until we 
reach the maximum range of transmission. From our experiments, we found that the maximum 
transmission range was around 70 feet. In order to eliminate losses due to collisions with other 
sensor nodes’ transmissions, in this experiment, we used only one sensor that operates in the 
autosend mode.  
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Table 1 Percentage of readings lost as a function of increasing distances 
 
Table 1 shows the extent to which data loss is affected by distance. We observe that in general, 
data losses increase with increasing distances from the base station. At 70 feet, there was 100% 
data loss. Large amount of material in radio-transmission literature also supports the fact the 
signal power decreases (losses increase) when distance between transmitter and receiver 
increases. Literature also suggests that many other problems, like those of ‘path-loss’ and ‘multi-
path fading’, start featuring with increasing distances. 
There could also be random collisions with transmissions from other wireless devices (covered 
in next section). Due to the inter-play of multiple complex factors influencing losses, we are 
unable to pinpoint an exact cause for the occasional fluctuations in data losses. 
 
This set of experiments has given us an idea of the data loss we can expect if the sensor node is 
far from the base station. If an application demands high data reliability and delivery, and still 
wants to cover a good area through its sensor network, it should consider a multi-hop network 
where sensors form a chain of ‘adequately’ closely placed nodes, passing data to the next node 
which is closer to the base station, until it finally reaches the base station. 

2.3.3.6.5 Interference from other devices 
 
The Mica motes use a radio frequency of 916 MHz for wireless transmissions. In this experiment 
we tried to determine the extent of interference by the following devices that use radio 
frequencies for their operations and are commonly found in an indoor environment: 
 
1. Telephones and wireless video transmitters: Many powerful cordless telephones and wireless 
video transmitters use frequencies in the 900 MHz range. We tested the performance of our 
sensor network in the presence of such a telephone (EnGenius SN920) and a video transmitter 
(accompanying CCTV-900 receivers). The results were disheartening because our sensor 
network had almost 100% data loss the moment these devices were switched on. These losses 
could not be reduced even when we tried to increase the distance between the transmitting 
devices (telephone and camera) and the sensors, or decrease the distance between the base 
station and our sensors. 

Distance from base 
station in Feet 

Percentage of readings 
lost 

1 2.0696617 
5 2.0696617 
10 3.5482258 
20 1.0494742 
40 4.9975259 
50 3.0484757 
55 5.0474762 
60 1.9330504 
65 1.1046817 
70 100 



Thermal Camera Calibration Using Wireless Sensor Networks 

 18

 
2. Wireless LAN (802.11b): 802.11b wireless LANs are commonly deployed in offices. These 
networks use a frequency of 2.4 GHz and do not interfere with our sensor network.  
 
3. Wireless audio transmitters: we operated our network in the presence of audio-technica’s 
ATW-3110D audio transmitters that use frequencies between 655-680 MHz for transmitting 
sound information to their corresponding receivers. They did not interference with our network. 
 
4. Other independently existing sensor motes: it is possible that there is another sensor network 
close to ours, which could interfere with our sensors’ transmissions. We simulated such an 
independent network by placing some sensors in the laboratory, which would broadcast 
meaningless data after every 150 milliseconds. The purpose of this setup was to determine how, 
similarly powered devices using the same 916 MHz frequency but working independently 
(asynchronously), could hinder our network performance. Figure 6 shows how the data losses in 
our network increased as the number of sensor motes in the ‘other’ independent sensor network 
increased.  
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Figure 6 Percentage of readings lost as a function of number of motes in ‘other’ network 

 
The graph clearly shows that the data loss is quite significant. The ‘other’ network is totally out-
of-sync with our network and since its nodes are transmitting at a much faster rate than our node 
in autosend mode, maybe our node’s transmissions are suffering more collisions and lesser 
useful data is being received at the base station. 
 
The experiments in this category have shown that MEMS sensors’ transmissions are susceptible 
to interference from other devices that use the same frequency range for transmissions. We have 
realized the Mica motes are relatively low powered as compared to bigger devices like wireless 
cameras and telephones. Thus, in the presence of more powerful devices, a sensor network is 
prone to total failure. In the presence of similarly powered devices, operating asynchronously 
with our network, the loss increases linearly as the number of nodes in the ‘other’ network goes 
up. 
 

2.3.3.7 Temperature sensor inaccuracy 
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We noticed that even though the ambience temperature was around 21 ºC, the sensor’s raw 
readings, when converted to engineering units (ºC) using the formula in the sensor data sheet, 
gave a value around 31 ºC. Moreover, even when placed under similar conditions, all sensors 
gave slightly different readings, about  ±1 ºC around an average of 31 ºC. Correspondences with 
the manufacturers lead us to the understanding that the formula in the data sheet is an 
approximation and that each sensor should be individually calibrated. Using a thermometer of 
accuracy ±1 ºC, we believe that the sensor readings are offset by about 10 ºC from the actual 
reading. Moreover, for our experiments we did not vary the scene temperature. Thus, ideally, a 
sensor should give the same reading over the entire course of the experiment. On the contrary, 
the readings from the same sensor showed a standard deviation of about ±0.1 ºC around the mean 
temperature reading.  These fluctuations could be due to heating of the electrical components 
around the thermistor. To get a reliable reading, we average the values collected from a 
particular sensor to get the temperature of the point where the sensor was placed. 
 
3. Experiments for thermal IR camera calibration 
 
We will now describe the experimental setup of the sensors and the camera in order to acquire 
data for the camera calibration process. The results of the experiment as well as their analysis are 
presented thereafter.  
 
3.1 Thermal IR Camera  
 
We are using the Omega thermal IR camera from Indigo Systems Corporation. The camera is 
linked to the computer via a ‘Hauppauge WinTV’ interface that allows capturing of digital 
images. The camera outputs gray-scaled images. The more the temperature of an object in the 
camera’s scene, the brighter the object appears in the image. The opposite holds for colder 
bodies.  Like the sensors, there were many issues regarding the data collection from the camera.  
 
3.2 Experimental setup  
 
We conducted our experiments in the indoor setting of our laboratory. Our experimental setup 
consisted of 8 sensors, each with a unique identification number, arranged in a grid format. The 
thermal camera was placed vertically above the sensor grid. The camera settings were changed in 
the way it is described in the previous section. We had a base station connected to a PC that 
collected readings from the sensors and saved them to a file on disk. Learning from our 
experiments discussed so far, we decided to collect data from the sensor motes using the 
‘autosend’ scheme. The camera periodically captured the grid covered by the 8 sensors and sent 
the image to the PC to be stored to disk for analysis later. The setup is illustrated in Figure 7. 
Examples of thermal IR image and visible spectrum image of the setup are shown in Figure 8 
and Figure 9. 
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Figure 7.  Experimental Setup 

 
 
 
 
 

 
 

Figure 8 Experimental setup viewed through a visible camera. The tiny black spot in the middle 
(slightly towards the right) of a sensor mote is the thermistor, whose thermal IR pixel value we 

need to determine.  
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Figure 9 Temporally averaged thermal IR image 

 
A thermometer with an accuracy of ± 1°C was also used to verify temperatures during the 
experiment. For the calibration experiment we kept the laboratory temperature constant at 21 °C 
(measured by the thermometer). The temperature close to the thermistor on each sensor was also 
recorded using the thermometer. The thermometer indicated the same temperature of 21 °C for 
all the sensors. 
 
3.3 Preliminary calibration results 
 
Once we have collected the data from the MEMS sensors and the camera, we can analyze them 
together using I2K software tools [14]. For increased reliability, we averaged multiple thermal 
IR images and MEMS sensor readings. These averaged images/readings are then used for 
calibration.  
 
Figure 10 shows the outcome of the thermal IR camera calibration using the hot-cold pseudo-
color visualization scheme. The blue color depicts the coolest regions (pixel value close to 15 
corresponds to about 17ºC) while red the hottest (pixel values around 180 corresponds to about 
26ºC). This image complies with our intuition. The red area is a metallic switch that is hotter 
than any other object in the thermal camera’s field of view. With our calibration mechanism, we 
can assign temperature values to all the different colored regions in the image in Figure 10.  
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Figure 10 Pseudo-colored thermal IR image  

 
 
6. Conclusion  
 
In this report we have documented system design issues for applications that would be using 
wireless “smart” MEMS sensor networks. Our focus was on the spectral camera calibration 
application. We started by enlisting the issues related to MEMS sensors only and then 
highlighted some issues when the MEMS sensors and a spectral camera are integrated into a 
system. Finally, we explained the experimental setup and showed some preliminary calibration 
results for a thermal IR camera.  
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Appendix A 
 
Troubleshooting some common problems: 
 
 
 

 Programming the motes 
In order to program a mote with an application, follow the steps given below: 
 
1. On the computer configured with TOS tools, compile the TinyOS application code 

that you want to program your mote with. If you have successfully installed TinyOS 
then if are in the directory where the code resides, typing “make mica” compiles the 
code. 

2. Place the mote board (or the mote and sensor stack) into the bay on the programming 
board. In order to programme a board, one must supply a 3-volt supply to the 
connector on the programming board or power the node directly. The red LED on the 
programming board will be on when power is supplied. 

3. Plug the 32-pin connector on the programming board into the parallel port on the 
computer that has the TinyOS installed, using a standard DB32 parallel port cable. 

4. Type: “make mica install”. This should install the code on the mote. If you want to 
designate an identification number (ID) of the mote, type the ID number after install. 
For example, typing “make mica install.2” will assign an ID of 2 to the mote. 

5. On the computer configured with TOS tools, compile the TinyOS application code 
that you want to program your mote with. If you have successfully installed TinyOS, 
then if you are in the directory where the code resides, typing “make mica” compiles 
the code. 

6. Place the mote board (or the mote and sensor stack) into the bay on the programming 
board. In order to programme a board, one must supply a 3-volt supply to the 
connector on the programming board or power the node directly. The red LED on the 
programming board will be on when power is supplied. 

7. Plug the 32-pin connector on the programming board into the parallel port on the 
computer that has the TinyOS installed, using a standard DB32 parallel port cable. 
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8. Type: “make mica install”. This should install the code on the mote. If you want to 
designate an identification number (ID) of the mote, type the ID number after install. 
For example, typing “make mica install.2” will assign an ID of 2 to the mote. 

 
 Generating documents for debugging 

A useful feature in TinyOS is that it allows you to generate documentation on the fly, 
during code compilation. The document thus generated gives a pictorial representation of 
how the different components used by the code are wired to each other. This can be very 
helpful during debugging as it allows the programmer to ensure that the components are 
linked as intended by the programmer. One can generate the document for a code by 
typing: “make docs mica” for compiling the code instead of typing “make mica”. 

 
 Motes programmed without errors, but not giving the desired output? 

Before you do anything else, make sure you know your sensors and Mica board well 
(http://webs.cs.berkeley.edu/tos/tinyos-1.x/doc/micasbl.pdf) and have checked some of 
the files that are used during installation of your program on the motes. One such file is 
the Makerules file in the tinyos-1.x/apps directory. By default, when we say ‘make mica 
install’ while programming our motes, Makerules file assumes that the mica board is of 
type ‘micasb’. However, as we found out later, after a few weeks of futile effort at 
programming our motes to give the right output, our motes were of type ‘basicsb’. To get 
the right output, we then changed the following Makerules file’s lines: 

#Sensor Board Defaults 
ifeq ($(SENSORBOARD),) 

  ifeq ($(PLATFORM),mica) 
# SENSORBOARD = micasb  …comment this out 

   SENSORBOARD = basicsb  …add this line 
  endif 

 
If you are sure that the problem is not in your code, and that all the components are wired 
well in your code’s configuration file, then you should check the other ancillary tinyos 
files to ensure that the right setting are being used. Directory contents of ‘C:\tinyos-
1.x\tos\sensorboards’ give the detailed pin layout of different Mica boards and comparing 
them with your own board will help to determine your board. 

 
 Sometimes one can’t obtain data from the ADC component on the motes. 

ADC component can handle only one request at a time. So, if you call ADC.getData() 
successively, before the first call has been fulfilled(through the signaling of the 
ADC.dataReady() event), the second call will fail.  

 
 
 


