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Abstract 

In this report, we address the problem of multi-instrument analysis from point and raster 

data. A camera-based sensor acquires raster data (images). Point-based sensors are 

attached to the object of interest and report accurate measurements at a sparse set of 

locations. Our work tackles the problem of raster and point data integration, and includes 

sensor registration, point data interpolation, variable transformation, data overlay and 

value comparison. We describe a few necessary steps one has to perform in order to form 

two comparable data sets in terms of (1) their coordinate systems, (2) spatial resolution 

and (3) physical entities. The objective of the processing steps is to resolve the above 

issues by (a) spatial registration of both data sets, (b) B-spline interpolation of point data, 

and (c) variable transformations of point data according to structural engineering 

formulas. We present our preliminary results from the on-going research that is a part of 

the National Earthquake Engineering Simulation (NEES) project and conducted in 

collaboration with the Civil and Environmental Engineering Department, UIUC. Our 

future work will focus on developing a new uncertainty model for data fusion so that we 

can predict and optimize setup parameters in the future multi-instrument experiments, for 

example, point sensor spacing, camera distance, point sensor locations or spatial overlap 

of sensor measurements. 
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1. Introduction 

Recently, the growing number of applications for many different areas created the need 

for new sensors that can carry out the specialized tasks with high performance. Multiple 

sensors of the same kind or various types can be used for more accurate and confident 

data collection in one experiment. Although these multi-instrument experiments lead to 

measured data with increased quality, they pose new challenges on multi-sensor data 

fusion. For example, a conventional camera and an infrared camera can outperform a 

single camera or multiple conventional cameras in the environment with unexpected 

change of lighting or atmospheric conditions. However, in order to benefit from the 

multi-camera systems, one has to resolve several data fusion issues and these issues are 

addressed in the rest of this document. 

Multi-sensor fusion is the process of dealing with the association, correction, 

correlation and combination of the sensor data from multiple sources with different 

modalities (wavelengths, data types, reference coordinate systems, imaging mechanisms, 

etc). A typical sequence of multi-sensor fusion steps is as follows: 

1. Acquisition: Observe the same scene while measuring data with two or more 

multi-modal sensors. 

2. Transformation: Transform all multi-sensor observations into a geometrically 

conformal form, such as a raster image. 

3. Registration: Match common features in all transformed data to establish a 

common coordinate system. 

4. Uncertainty analysis: Estimate the uncertainty (inaccuracy and confidence) of 

each sensor measurement after transformation and registration steps. 

5. Integration: Fuse multiple data sets into a new data set by minimizing the 

uncertainty. 

In addition to more confident and accurate fused data, the multi-sensor data fusion can 

provide additional benefits, such as, an extended temporal and/or spatial coverage, 
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reduced ambiguity, enhanced spatial resolution, and increased dimensionality of the 

measurement space. 

While an increasing number of sensors have been developed recently, one of the 

most popular sensors is still a camera-based sensor because of its low cost and multi-

purpose applicability in practice. The camera-based sensors perform non-contact 

measurements of target objects. In general, a camera-based sensor generates raster data 

that can be described as measurements of a 3D scene projected to the camera plane and 

represented by a regular two-dimensional array of values. For example, a conventional 

camera with arrays of charge-coupled devices (CCD) measures three arrays of light 

values of particular red, green and blue wavelengths that are visible to human eyes. Other 

cameras may use different wavelength bands, e.g., a thermal infrared (IR) camera, or 

different wavelength (spectral) resolution, e.g., a hyper-spectral camera.  

Regardless of a wavelength, the accuracy of camera-based sensors is limited due 

to (a) camera noise, (b) measurement distortion caused by varying scene and light 

medium characteristics, e.g., fast moving objects, airflow, temperature and lighting 

condition, or (c) a limited field of view. For example, a spatial resolution may 

significantly degrade the accuracy of measurements of a large scene due to a limited field 

of view. This is the case of a camera moving away from the target object in order to 

capture an entire large scene. One approach to this problem is the use of multiple cameras 

located close enough to the target in different spatial locations, and fusing the acquired 

images to generate a big image with large spatial coverage and high spatial resolution. 

Unfortunately, this approach introduces new problems of camera calibration and image 

alignment.  

Another approach to enhance the data quality from camera-based sensors is by 

using auxiliary deployable sensors, such as Micro-Electro-Mechanical Systems (MEMS), 

measuring scalar values at multiple locations on target objects. The MEMS sensors are in 

contact with the target objects, and hence their measurement error is more predictable and 

accurate. The measured entity can be a coordinate with respect to the fixed coordinate 

system, e.g., Global Positioning System (GPS), or an orientation, e.g., motion trackers, or 

some other physical entities, e.g., temperature, vibration or stress. The major challenge of 
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this approach lies in the limited number of measurements due to the physical size of 

sensors placed on a target object.  

This report addresses the problem of multi-instrument (or multi-sensor) data 

analysis from raster (camera-based sensors) and point data. The multi-instrument data are 

generated during a material structural health analysis experiments, which is our 

application driver. Structural and earthquake engineers are interested in studying strain 

and stress values while loading a structure in multiple directions and with a variable load. 

The instruments for these experiments generate both raster-based and point-based 

information and the information corresponds to different physical quantities that can be 

related theoretically. For example, the camera-based Stress Photonic System generates a 

raster image where each pixel represents some shear strain values. This system can 

quickly produce full-field images of structural stresses and strains on the structure surface 

by measuring the ellipsity of the polarized light that is reflected by special photo-elastic 

coating on the test specimen. Another sensor, the point-based Krypton system, can 

measure three-dimensional coordinates of LED-based targets on a test specimen. The 

measured coordinates can be transformed to displacement values of the targets and the 

displacement values can be closely related to the strain and stress of the material of the 

target objects. The major limitations of the Stress photonic system include: (1) limited 

field of view and limited resolution of the image, and (2) some missing parameters for 

strain analysis, such as normal strains. We can overcome these limitations by using the 

Krypton system. However, we have to understand and analyze multi-instrument sensor 

data in order to improve the data spatial resolution and the accuracy of any derived or 

measured physical entity, for instance, by analyzing interpolation methods that have to be 

used. The aforementioned sensors and the associated data fusion problems are an 

integrated part of the Network for Earthquake Engineering Simulation (NEES) project 

conducted at the MUST-SIM facility at UIUC. 

The outcome of our proposed analysis leads to the following advancements: 

• Increased confidence and reduced ambiguity: The point-based sensors usually 

provide relatively more accurate and predictable measurements, and the raster 

data (images) can be calibrated by estimating the extrinsic parameters using the 

point measurements as reference points. 
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• Extended spatial coverage: Interpolating values based on a set of sparse 

measurements (point data) to raster data enhances possibly low-resolution raster 

images. 

• Efficient registration: Point-based sensors attached on a test object can play a 

role of registration control points in a raster image during a template-based search 

for registration landmarks. There is no need to extra artificial landmarks for 

registration purposes. 

• Increased spatial resolution: Lower accuracy of raster data can be enhanced by 

more accurate point data. 

 

In this report, we demonstrate the above advancements by processing the data from 

Krypton System (point-based sensor) and Stress Photonic System (raster-based sensor). 

The project is an integrated part of the NEES MUST-SIM project and it is conducted as a 

collaboration of the National Center for Supercomputing Applications (NCSA) and the 

Department of Civil and Environmental Engineering at University of Illinois. The 

software documentation about the developed tools is a part of the Image to Knowledge 

(I2K) documentation [5] 

2. Problem Formulation 

Given raster data and point data, three steps can describe the general process for sensor 

fusion: data registration (calibration), interpolation of point data and data fusion. An 

automatic template-based data registration is based on defining (selecting an image 

example) a point sensor template (a point-sensor appearance in raster data), searching for 

the occurrences of the template in a raster image and transforming the data to one 

coordinate system by using the found locations of template matching as control points. If 

the automatic approach fails due to a large variation of point sensors then it is possible to 

define control points by mouse clicks. After the registration step, two data sets are 

converted into a conformal data form (image), and can be analyzed. Figure 1 show an 

overview of how two data sets are converted and fused. First, the raster data 1λ  is 

calibrated using point data 2λ  as reference points, and create a calibrated image '1λ . To 
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fuse 2λ  with '1λ , we create a raster image '2λ  from 2λ  by interpolation, such as B-spline 

data fitting. While interpolating, boundary conditions must be known a priori due to the 

lack of data points close to the data boundaries. The interpolated images are in the same 

conformal form as the raster images. There are multiple strategy for data fusion of '1λ  

and '2λ , and we will describe our strategy later in the text. 

 

 

 

In order to solve the data fusion problem for raster-based and point-based sensors, we 

decomposed the process into the following steps: 

1. Sensor setup: For a successful experiment, prepare the sensors so that they 

acquire data 1λ  and 2λ  from the same spatial location. We assume that the point-

based sensors are reasonably small and do not occlude any significant area of the 

scene. It is recommended to orient the camera perpendicular to the test object 

surface in order to eliminate any distortion due to a perspective view. Depending 

on the application, the point sensors can be arranged in a grid or in clusters. It is 

assumed that the point sensors are spatially sparse and locations of all point 

sensors are known a priori or can be directly measured during the experiment.   

2. Synchronization: Synchronization is an important issue for data collection from 

multiple sensors to guarantee temporal coincidence of measurements. Generally, 

Figure 1: Data fusion of a raster image and a set of point data 
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synchronization can be achieved in two different ways. First, each sensor takes its 

measurement after being triggered by one centralized controller. This way, any 

collected data can be processed in real time since the data is available 

immediately. Second, each sensor collects data independently and stamps it with a 

global time stamp. One can process such data collection based on the global time 

stamp. 

3. Data enhancement: In case that the measured data value of the test target 

changes very slowly comparing with the sensor speed of the data measurement, 

multiple temporal steps of the measurements can be averaged to generate a more 

reliable and less noisy data set. The raster data can then be enhanced (calibrated) 

again by taking the point data as reference points.  

4. Registration: As described in Step 1, the point sensor location is previously 

known or measurable during the experiment, e.g., manually or using tracking 

devices. Matching salient sensor points in raster data with known point sensor 

locations is used for performing a multi-sensor registration. In our sensor 

environment, the point based sensors play the role of the feature points, e.g., 

landmarks. The registration model in our application is an affine transform that 

compensates for translation, rotation and shear. 

5. Image generation: The point data is too sparse to directly compare their values 

with the corresponding raster data. We estimate a denser image 2 'λ  by 

interpolating point data 2λ . Depending on the application needs, one can use bi-

linear, bi-cubic, B-spline or other interpolation methods. In the case of B-spline 

based interpolation, boundary conditions can be provided by the registered and 

calibrated raster data 1 'λ . The output is a set of raster images or an image with 

multiple bands where each image (or band) has different physical entity. Note that 

the raster image 1λ  and the generated image 2 'λ  are registered because the point 

data set is already registered with the raster data in the previous step. 

6. Value derivation: We derive a new physical entity λ  for value comparisons by 

transforming 1 'λ  and 2 'λ  according to appropriate physical laws.  
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7. Uncertainty analysis: We analyze the uncertainty of 1 'λ , 2 'λ  and λ that is caused 

by error propagation during the geometric image transformation (affine 

transformation), interpolation and value transformation [6]. 

8. Image fusion:  We may have multiple data fusion scenarios depending on the test 

setup, and experimental hypothesis. 

• Value selection: Based on uncertainty analysis, create a new image by 

taking the more confident value from the generated data sets 1 'λ  and 2 'λ  

for all spatial locations. 

• Value merging: In case that each sensor provides different physical 

entities as well as a common physical entity, they can be merged into the 

new image λ  that contains both physical entities from 1 'λ  and 2 'λ .  

• Spatial extension: In case that the point sensor measures larger area, 

interpolated data can be adjusted by raster data based on the spatial area 

where both measurements are available. 

3. Test Setup and Data Acquisition 

Our goal is to acquire data set from a test specimen with multiple instruments in order to 

derive very accurate and highly confident data. In this section, we present a test setup that 

is designed for acquiring data suitable for our data analysis. The list of setup 

requirements is summarized as follows. 

 

• Set both image-based and point-based sensors to acquire data from the same 

spatial location. Depending on applications, one sensor may cover larger area than 

the other. It is recommended that there is sufficient spatial overlap of the data sets.  

• In order to avoid occlusion, the size of point sensors is small with respect to the 

size of areas of interest. The problem with occlusion should be also avoided by 

spatially sparse distribution of point sensors. 

• Viewing geometries of all camera-based sensors are the same. It is recommended 

to setup the camera-based sensors perpendicular to the surface of the test target. 
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• Point sensors can be arranged in a grid or in a cluster formation. Point sensors are 

firmly attached and their locations are known a priori. 

   

3.1 A grid-based target arrangement 

It is useful to arrange point-based sensors in a grid formation for mathematical modeling 

purposes and for uniform spatial coverage. In this configuration, the point sensors are 

arranged in a grid pattern aligned with the image row/column coordinate system. This 

configuration provides the following benefits: 

• Efficient registration by using point sensors in a raster image as salient features 

for computing registration parameters. Point sensor detection in a raster image can 

be faster and more accurate since the known geometric layout of the point sensors 

improves robustness of automatic detection. 

• Fast interpolation. Given equidistant point spacing, B-spline interpolation model 

can use uniform knot vectors and hence the interpolation is computationally less 

expensive. 

• Minimum uncertainty variation across a given spatial coverage. Any 

configuration other than a uniform grid will lead to a larger uncertainty variation. 

•  Efficient transformation of point data to raster image. The point data can be 

directly transformed to a raster image with dimensions equal to the number of 

sensors times spacing distance along each direction. Later, low-resolution images 

can be interpolated to generate higher resolution images. 

 

Assuming the grid configuration, we can automatically derive the sensor geometry by 

partitioning the coordinates set independently along x  (column) and y  (row) axis. Let 
( )x

kP  be a set of points ip  such as: 
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The point ijP  in a two dimensional location, where i  is the row index and j  is the 

column index, can be found by satisfying: 

( ) ( ),  where ,x y
ij k k j k ip p p P p P= ∈ ∈  

After finding the set of points ijP , we can map the unique ID of each sensor in the scene 

with the raster image coordinate system. We refer to this operation as sensor localization.  

 

3.2 Test setup for the NEES experiment 

In the NEES MUST-SIM experiments, we used both Krypton (point-based sensor) and 

Stress photonic system (raster-based sensor) for analyzing a test specimen. Figure 2 

shows an example of the test setup. The structure is first coated by an epoxy to reflect 

polarized light capture by the Stress photonic camera. Next, Krypton LED targets are 

attached in a grid pattern on top of the epoxy coating. Both the Krypton camera and the 

Stress photonic camera are viewing the same region of a test specimen. Although the 

LED targets occlude some area of the epoxy coating, the missing region of the Stress 

photonic data can be recovered by using interpolation methods, for instance, the nearest 
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neighborhood interpolation method. We view the Krypton system as a point-based sensor 

regardless of the camera sensing LED locations. 

 

The Krypton system is capable of measuring 3D coordinates of LED targets in real time. 

By placing the Krypton LED targets systematically on a grid, we can acquire a useful 

data set for finite element analysis. Krypton provides 3D coordinates for up to 256 LEDs 

on a test specimen. The raw output of Krypton is by default in a MATLAB data file 

format. The file consists of a set of three-dimensional coordinates of LED targets 

associated with time stamps. Figure 3 shows an example of raw data. The first column 

contains a time stamp and the following columns contain x , y  and z  coordinates of 

individual LEDs ordered based on their IDs. The coordinate values are reported in 

millimeters. The coordinates are normalized to the local origin of the Krypton system, 

which is predefined by the provided probing device at initialization procedure.  

Figure 2: Test setup for NEES experiment 
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Figure 4(a) shows a visualization of the test data. The red dots denote LED targets and 

form a grid pattern. Figure 4(b) shows the result of the dynamic detection of LED 

identification numbers.  

 

  

(a) (b) 

4. Affine Parameter Estimation for Registration 

The first step of registration is to find the best corresponding features in two coordinate 

systems. In this report, we automatically find the LED sensor locations in a row-column 

based coordinate system of the raster image. In a grid point sensor layout, we can find the 

correspondences by using the method suggested in Section 3.1. We assumed that the 

camera-based sensor is perpendicular to the test target, and therefore a simple affine 

Figure 3: Krypton RODYM data format 

Figure 4: Dynamic grid detection: (a) Point visualization and (b) dynamic grid detection 
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transformation model is sufficient for registering two coordinate systems. The affine 

transformation is defined as: 

 

Given a set of corresponding points ),( yx  and )','( yx , called feature points or 

registration control points, we estimate the affine transformation parameters xtdcba ,,,,  

and yt . Each pair of corresponding points provides two constraints for x and y, and 

therefore we need at least three corresponding points to estimate all six affine 

transformation parameters. The transformation matrix can be rewritten as a set of linear 

equations. 

 

We rewrite the two equations in a matrix form: 

 

To be able to cope with more than three pairs of feature points, we used the least squared 

method described in [3]. For each x-parameter set and y-parameter set, the least squared 

equation of the affine transform can be written as: 
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where [ ]T
xx tbaq 1−=  and [ ]Tyy tdcq 1−= . To estimate xq , we rewrite the 

matrix as: 
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 where 3>=n , which makes the matrix non-singular. To estimate xq  and minimize the 

sum of the least squared error, we take the eigenvector of the smallest eigenvalue 

computed from the covariance matrix. The estimation for yq  is performed the same way. 

The final estimated affine parameters are used for interpolating point-sensor data to 

match the resolution of raster data.  

5. Data Transformation 

Point sensors acquire a collection of values at multiple spatial locations. By configuring 

the point sensors in a grid pattern, we can generate easily dense raster data based on 

continuous interpolation models. The reason for selecting continuous interpolation 

models comes from our understanding of physical phenomena. For example, many 

materials in structural engineering are assumed to follow an elastic model, or in other 

words, a model that assumes a smooth spatial variation of certain physical properties due 

to material loading. Based on this type application understanding, we used a B-spline 

interpolation method since it satisfies C-2 continuity as required by our application. In the 

rest of this section, we assume the grid arrangement of point sensors as described in 3.1. 

5.1 Image generation by B-spline based interpolation 

Due to the spatial size of point sensors, the point data are usually at coarser spatial 

resolution than the raster data. To acquire point data at higher resolution, one can either 

increase the number of sensors or can estimate the values between sensors by creating 
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imaginary sensor readings, called interpolation. The first approach is straightforward and 

provides more accurate data values. However, it is not only the spatial dimension of point 

sensors that limits the density of point sensors but also the material occlusion of point 

sensors in raster data that voids the usefulness of raster data for data fusion purposes. 

With the interpolation approach, one can overcome the above problems although the 

trade-off between spatial density of measurements and accuracy of measurements 

remains to be addressed. Different interpolation methods can be used in this approach. A 

bi-linear interpolation method can be used to linearly estimate one or multiple values 

inside of each cell by taking four boundary points. The main problem of bi-linear 

interpolation is the discontinuity of the values at the edges of adjacent cells. Our 

assumption is that there are no cracks in a test structure and the test object most likely 

follows a smooth distribution of certain physical entities. The rest of this section 

describes the B-spline based interpolation method. 

 

We assume that we are given a set of three-dimensional points ),,( kvyx , where ),( yx  are 

from a two-dimensional xy -plane, and Vvk ∈  is the measurement at ),( yx . The B-spline 

interpolation procedure follows a standard surface-fitting algorithm as described in [2]. 

For evenly spaced point sensors, we used uniform B-splines rather than the standard B-

spline with individually assigned knot vectors. The uniform B-spline leads to faster and 

simpler computation. The description of our procedure for the three-dimensional surface 

fitting is presented next. 

 

1. Construct a curve network: Fit a set of curves (U-curves) for the points along x -

axis (rows), and a set of curves (V-curves) along y -axis (columns). 

2. Convert the curve network of B-splines from Step 1 into a new curve network 

represented by Bezier curves.  

3. For each cell in the curve network, construct Bezier patch by estimating four 

missing control points in each cell by doing bi-linear interpolation.  

4. Join all created Bezier patches to form the whole interpolation surface. 
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To construct the curve network according to Step 1, we use a uniform B-spline as defined 

below: 

 
)(uQi  is a parametric representation of the i th curve segment with respect to u , where 

10 ≤≤ u , and P  is a set of control points. We can represent this formula in a matrix 

form as:  

 
The curve fitting in Step 2 is the process of finding the B-spline )(uQ  that passes through 

the data points. Given a set of data points on the curve )(uQ , the curve fitting requires 

computing the set of control points P  for each spline segment. Thus, we rewrite the B-

spline equation as: 

 

pD  represents the set of data points, and pu is the knot value which corresponds to the 

data point. From this formula, we have a system of equations in a matrix form: 

 

 
By solving this system of linear equations, we compute a set of curves with respect to 

each column and row in the curve network.  
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In Step 3, the goal is to convert the set of control points of B-splines into a set of control 

points of equivalent Bezier curves. Given Bezier control points, we can define the Bezier 

patches as: 

 
The union of all Bezier patches is achieved in Step 4. The joined Bezier curves satisfy the 

C-2 continuity property since they are identical to the B-spline. Thus, the joined patches 

are continuous with the C-2 continuity, as well. 

5.1.1 Data interpolation for strain analysis 

The Krypton system enables users to utilize relatively large number of LED targets in 

comparison with classic sensors, such as displacement transducers. Nevertheless, the 

density of measured data is still spatially coarse in comparison with the raster data 

generated by Stress photonic system.  This fact leads to the need for spatial interpolation 

of Krypton data in the NEES experiments and the steps are described next. 

1. At time t , compute displacement values xδ  and yδ  with respect to the initial 

loading step for every LED target. 

2. Form two sets of 3D points by mapping xδ  and yδ  to the z  coordinate. 

3. For each coordinate set ),,( xyx δ  and ),,( yyx δ , apply surface fitting algorithm to 

recover the two three-dimensional surfaces, xδ -surface and yδ -surface. 

4. Sample points from each constructed surface to generate raster images. 

5. Compute xε , yε , xyγ  and maxγ  according to structural engineering formulas from 

the two interpolated raster data sets to create new raster images representing these 

new physical entities. The detailed formulas are provided in the next section. 

 

In this section, we showed how to use the general data interpolation method to construct a 

strain analysis model by interpolating displacement values xδ  and yδ .  Figure 5 shows 

the exaggerated deformation of the LED targets on the test structure at 6=t . The left-end 

of the target structure was fixed, and the loading was applied toward the right-end bottom 

of the test structure. From the red points shown in Figure 5, we constructed raster images 
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of xδ  and yδ , illustrated in Figure 6. We can observe that the pseudo-colored images 

show smooth contour curves with respect to the displacement values. 

 

 

 

 

(a) (b) 

5.2 Value transformation 

5.2.1 Strain analysis using a finite element model 

5.2.1.1 Point data transformation (Krypton system) 

 

In order to perform a finite element analysis of a test structure, we computed 

displacement changes at time t  with respect to the initial loading for each grid cell 

defined by the four closest point sensors. To compute displacements at the grid cell 

Figure 5: Exaggerated deformation of the LED targets 

Figure 6: Interpolated displacement image: (a) xδ  (color range: -0.002mm ~ +0.002mm) 

and (b) yδ  (color range: 0.00mm~0.05mm) 
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edges, we calculated the Euclidian distances of LED target coordinate measurements 

between adjacent points on the grid. Figure 7, (a) shows the LED target layout for the 

analysis. A point ),,( ijijijij zyxp =  represents a three-dimensional coordinate of one LED 

target at ji,  in xy -plane. 

 

  

(a) (b) 

For each cell with four points 111 ,, +++ jijiij ppp  and 1+ijp , we calculate six Euclidian 

distances for finite element analysis, as it is illustrated in Figure 7(b). 

 
Based on all Euclidian distances at time t , the strain along each edge is calculated as: 

 
Following formulas show some elemental strains based on the edge strains at time t . 

 

 

Figure 7 (a) A layout of Krypton LED targets and (b) one cell considered for the finite 

element analysis 
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)(txε  and )(tyε  are the average normal strains along x -axis and y -axis respectively. A 

positive value of the normal strain means a tensile strain and a negative value means 

compressive strain. The shear strain xyγ can be calculated by measuring diagonal strains, 

1, 2D D , which is closely related to the shape of the element. All four values generated 

above are essential for constructing the Mohr's circle that is frequently used in strain 

analysis. For more details, see [1]. 

 

5.2.1.2 Raster data analysis (Stress Photonic system) 

The Stress Photonic system measures two types of shear strains: 45γ  and 0γ . The shear 

strain 45γ  corresponds to the shear strains on the °± 45  inclined planes and 0γ  represents 

the shear strains on the °90/0  planes. These two entities can be transformed into the 

maximum shear strain maxγ  defined below. 

 
The shear strain maximum is one of the comparable physical entities that one could 

derive from Krypton and Stress Photonics data. While the shear strains 45γ and 0γ  

represent a point on the Mohr’s circle, the maximum shear strain maxγ corresponds to the 

Mohr’s circle radius. For more detail, see [4].  

Although the Stress photonic system provides relatively accurate shear strain 

measurements, it is not possible to recover the average normal strains xε  and yε  from the 

raster data. In this case, the fusion of point data and raster data can not only improve an 

accuracy of shear strain, e.g., maxγ but also expand the list of accessible variables, e.g., xε  

and yε , for finite element analysis. 
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5.2.1.3 Experimental result 

5.2.1.3.1 Krypton System 

Figure 8 shows a test specimen in (a) and the LED IDs at their detected locations in (b). 

The developed LED detection method is capable of finding a partial grid, as well as, a 

complete grid. For example, we could detect point-sensor locations on a L-shaped 

structure by masking missing targets (see Figure 8). 

 
 

(a) (b) 

After computing average normal and shear strains along edges of each cell, element 

strains can be visualized as pseudo-colored images in Figure 9 and Figure 10. Each cell is 

pseudo-colored with respect to the horizontal or vertical strain value according to the 

Equations presented in the previous section. The presented test data were generated using 

ABAQUS software that simulated the Krypton output (vector data). 

 

  

(a) (b) 

 

Figure 8: L-shaped structure: (a) LED layout and (b) grid detection 

Figure 9: Normal strain: (a) horizontal strain ( xε ) and (b) vertical strain ( yε ). 
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(a) (b) 

5.2.1.3.2 Interpolated result of the Krypton System 

Given an interpolation model, we can create a raster data set of directional displacements, 

as shown in Figure 6, at any raster resolution (density). Thus, we can generate a much 

denser representation of the images shown in Figure 9 and Figure 10 by applying 

transformation formulas to the interpolated data set. Figure 11 and Figure 12 show raster 

images derived from the interpolated data at higher spatial resolution from the data 

shown in Figure 6. 

 

 

(a) (b) 

 

 

  

Figure 10: Shear strain: (a) shear strain ( xyγ ) and (b) maximum shear strain ( maxγ ). 

Figure 11: Interpolated normal strains: (a) horizontal strain ( xε ) and (b) vertical strain 

( yε ) 
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(a) (b) 

5.2.1.3.3 Stress Photonic System 

Figure 13 shows the visualization of ABAQUS predictions for Stress Photonic system 

data. Figure 13 (a) shows the shear strain 45γ , which is equivalent to xyγ in the 

displacement based strain calculation, and Figure 13 (b) shows the derived maximum 

shear strain maxγ . 

 

 

(a) (b) 

 

6. Conclusion 

In this report, we showed a framework for multi-instrument data analysis from point and 

raster data. The presented work involved sensor registration, point data interpolation, 

variable transformation, and value comparison. We successfully generated two 

comparable data sets in terms of (1) coordinate system locations, (2) spatial resolution 

and (3) physical entities by (a) B-spline interpolation of point data, (b) variable 

transformations of point data and (c) spatial registration of both data sets. Our future 

Figure 12: Interpolated shear strains: (a) shear strain ( xyγ ) and (b) maximum shear strain 

( maxγ ) 

Figure 13: Shear strain: (a) shear strain ( 45γ ) and (b) maximum shear strain ( maxγ ). 
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work will focus on uncertainty analysis as a function of spatial locations of the 

interpolated raster image. The contribution to measurement uncertainty will be analyzed 

with respect to (a) instrument error, (b) interpolation error, and (c) error propagation from 

value transformations. We hope to develop a new uncertainty model for data fusion so 

that we can optimize instrument setup parameters, for example, point sensor spacing, 

camera distance, point sensor locations or spatial overlap of sensor measurements, in the 

future multi-instrument experiments involving raster-based and point-based sensors. 
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