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ABSTRACT 
We present a system for gesture recognition using multiple orientation sensors. We focus 
specifically on the problem of controlling Unmanned Aerial Vehicles (UAVs) in the 
presence of manned aircrafts on an aircraft carrier deck. Our goal was to design a UAV 
control with the same gesture signals as used by current flight directors for controlling 
manned vehicles. We have explored multiple approaches to arm gesture recognition, and 
investigated real-time and system design issues for a particular choice of active sensors. 
We describe several theoretical and experimental issues related to a design of a real-time 
gesture recognition system using the IS-300 Pro Precision Motion Tracker by InterSense. 
Our work consists of (1) analyzing several gesture recognition approaches leading to a 
selection of an active sensor, (2) scrutinizing sensor data acquisition parameters and 
reported arm orientation measurements, (3) choosing the most optimal attachment and 
placement of sensors, (4) measuring repeatability of our experiments using Dynamic 
Time Warping (DTW) metric, and (5) designing template-based gesture classification 
algorithms and robot control mechanisms, where the robot represents an UAV surrogate 
in a laboratory environment. 

 
1 INTRODUCTION 

 
With the current advancements of autonomous unmanned vehicles, there is a need 

to support a control of unmanned and manned vehicles without interfering with the 
current control mechanisms of manned vehicles. For instance, the current control 
mechanism for manned aircrafts is based on people, called flight directors or yellow 
shirts, performing gestures according to a pre-defined lexicon of gestures and pilots 
following the gesture corresponding commands. In order to avoid changes of standard 
control practices and accommodate newly developed unmanned aircrafts, a problem of 
unmanned vehicle control using standard control procedures arises. This problem 
motivated our work and development. 

In this technical report, we focus specifically on the problem of controlling 
Unmanned Aerial Vehicles (UAVs) in the presence of manned aircrafts on an aircraft 
carrier deck. Our goal is to design a UAV control with the same gesture signals as used 
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by current flight directors for controlling manned vehicles. Given the fact that such a 
system has to operate 24 hours a day in a noisy and harsh environment, for example, on a 
Navy carrier deck, our approach to this problem is based on arm gesture recognition. 
Speech recognition systems were not recommended due to a very noisy background 
environment. Thus, our objective is to explore multiple approaches to arm gesture 
recognition, and investigate real-time and system design issues for a particular choice of 
active sensors. 

Our proposed gesture recognition system is based on IS-300Pro Precision Motion 
Tracker by InterSense [1], and an overview diagram in Figure 1 describes the entire 
system. An operator (a yellow shirt) performs a gesture, during which the tracker sensors 
transmit acquired data to the IS-300Pro base unit and then to a PC.  Sensor outputs are 
analyzed and classified into corresponding commands (gesture name). Gesture 
commands are converted into a set of robot instructions and sent to a robot. The robot 
surrogate, Pioneer II Robot [4] representing a real UAV, executes robot instructions in 
our laboratory environment. 

In this technical report, we describe several theoretical and experimental issues 
related to a design of a gesture recognition system using the IS-300 Pro Precision Motion 
Tracker by InterSense. Our work consists of (1) analyzing several gesture recognition 
approaches in Section 2 leading to a selection of an active sensor, (2) scrutinizing sensor 
data acquisition parameters and reported arm orientation measurements in Section 3, (3) 
choosing the most optimal attachment and placement of sensors in Section 4, (4) 
measuring repeatability of our experiments using Dynamic Time Warping (DTW) metric 
in Section 5, and (5) designing template-based gesture classification algorithm and robot 
control mechanism in Section  6. Our work is summarized in Section 7 together with a 
list of challenges and an outline of future directions. 

 
2 ARM GESTURE RECOGNITION APPROACHES 

 

2.1 Overview of Gesture Recognition Approaches 
Arm gesture recognition can be approached with using active or passive sensors, 

or a combination of both sensor types. An example solution using passive sensors would 
be a vision-based system. Single or multiple cameras acquire video stream that is 
processed and gestures are mapped into temporal signatures of changes in video frames 
[7]. This solution faces several challenges in such a harsh environment as the aircraft 
carrier deck and has to overcome changes in a flight director orientation, outdoor 
illumination (day and night), and possible occlusions of flight directors or recognizing the 
active (UAV specific) flight director among many directors on the deck. On the other 

Figure 1: Flow diagram of a developed system for robot control using hand gestures. 
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side, this approach does not require any changes in the current control practices, or any 
changes in the flight director’s equipment. One should be aware during a system design 
that any additional weight to the equipment worn by flight directors would increase 
fatigue of flight directors and hence additional weight is not desirable. This consideration 
imposes real-world constraints on systems with active sensors since they have to be worn. 

Examples of solutions using active sensors would include gloves with bent 
sensors [8] or miniaturized accelerometers [9], [10]. For example, the cyberglove in [8] 
uses 18 distributed bent sensors embedded in a glove to capture finger articulation. 
Similarly, the advancement in Micro-Electro Mechanical Systems (MEMS) led to 
building a glove prototype at UC Berkeley [10]. Most of these solutions have been 
developed for indoor virtual reality (VR) applications and are not easily extensible to 
outdoor applications with highly uncontrolled environment. 

The use of passive and active sensors together was reported in the past [12] with 
the goal of combining advantages of both sensor types. For instance, placing fluorescent 
markers on tracked objects and illuminating them with known light sources is an example 
of a vision-based hybrid system that does not constraint moving subjects with heavy or 
bulky sensors and improves robustness of a standard vision based system in terms of 
motion detection and tracking.  

We should also mention that the specific problem introduced in this section could 
have been approached by broadcasting video of synthesized gestures to the cockpit of 
manned aircrafts. A computer program driven by a flight director would create video of 
synthesized gestures. Pilots of manned aircrafts would recognize synthesized gestures the 
same way as they did in the past, and all unmanned vehicles would receive directly the 
de-coded (interpreted) commands. We developed video examples of synthesized gestures 
for test purposes. However, this solution, although very robust from gesture recognition 
viewpoint, is not acceptable by the end application because the person giving commands 
has to be present on the aircraft deck during the entire time of any vehicle navigation. 

2.2 Proposed Approach and Sensing 
While there are many approaches to gesture recognition, we chose to research and 

develop a solution with active sensors because of the end application requirements on 
performance robustness and reliability. By considering the importance of (a) system 
reliability in a highly varying environment (e.g., geometry, illumination, line of sight, 
temperature, and operator’s fatigue) and (b) safety of navigation operations, the active 
sensing approach outperforms solutions based on passive sensing approach. As one part 
of our research, we surveyed and evaluated active sensors based on their (a) size, (b) 
weight, (c) cost, and (d) commercial availability. We considered three different solutions, 
such as, (1) virtual reality (VR) motion trackers [1], (2) global positioning systems (GPS) 
[11] and Micro-Electro-Mechanical Systems (MEMS) with tiny operating system 
(tinyOS) [9], [10]. The choice of the IS-300 Pro Precision Motion Tracker by InterSense, 
MA, for this work was primarily driven by its best sensing performance specifications 
and its commercial availability. For example, a spatial accuracy of GPS (around 3 m for 
the GPS with the Wide Area Augmentation System) and an extra development effort 
(building a glove with MEMS sensors) were considered as major drawbacks of the other 
two solutions. The cost of IS-300 Pro Precision Motion Tracker ($4,375 for the base unit 
plus $1,437 for each additional sensor), and the size and weight parameters (each sensor 
cube weighs 2.1 oz and measures 1.06”x1.34”x1.2”) were at the borderline of being 
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acceptable at the time of purchase. Nevertheless, the vendor has miniaturized the sensors 
and decreased their weight significantly since the time of purchase.  

Given the choice of an active sensor, our approach to the problem of gesture 
recognition is based on (1) translating arm motion into a temporal sequence of orientation 
of angles, (2) describing a sequence of orientation angles with its characteristics, (3) 
building models of gestures in a lexicon using sequence characteristics of orientation 
angles, and (4) classifying sequences of orientation angles into gesture classes according 
to the developed gesture models in real time. The basic premise of our approach is an 
existence of a unique mapping between human gesture represented by arm motion and a 
temporal sequence of upper arm and forearm orientation angles. The existence of such a 
mapping is frequently used in the computer graphics community where arms are modeled 
as connected cylinders or ellipsoids, changing their orientation in a world coordinate 
system. Our overall approach is fundamentally robust to most environmental conditions 
on an aircraft carrier that makes the vision-based solution difficult. These conditions 
include variable lighting, occlusion in the line of sight, background clutter, fog, and hot 
engine exhaust. Distance from the director to the aircraft is not a factor either as long as 
the communication between the yellow shirt and a specific aircraft (manned or 
unmanned) can be established.  Communication is clearly a problem, but our system 
requires very low bandwidth (only communicating high level commands at a frequency 
less than a few hertz).  

 
3 SENSOR DATA ACQUISITION PARAMETERS 

 

3.1 IS-300 Pro Parameters 
The IS300 Pro Precision Motion Tracker is shown in Figure 2 and it was 

developed for head movement tracking in virtual reality systems. The base unit of IS300 
can track up to four sensor inertia cubes. We have scrutinized (1) acquisition rate 
(maximum tracking rate is 1200° per second, update rate is up to 500Hz), (2) 
measurement accuracy (RMS angular resolution is 0.02°, RMS angular accuracy is 1.0°, 
and RMS dynamic accuracy is 3.0°), (3) temperature range (0°C to 50°C), and (4) 
ruggedness (shock sensitive), in addition to size, weight and cost evaluation criteria 
mentioned before. All parameters were adequate for our application except from the 
sensor ruggedness. However, the ruggedness was not our major concern at this time. By 
using the IS300 Pro Precision Motion Tracker, we have also avoided the issues related to 
multiple sensor synchronization because the IS300-Pro base unit handles four sensors 
simultaneously.  

 
Figure 2: a) IS300 Pro base device, b) single Inertia Cube, and c) base device with 4 cubes on 

arm bands
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3.2 Selection of Reported Orientation Measurements 
The last parameter scrutinized before running any experiments was the choice of 

reported orientation measurements, such as, (1) a 3x3 rotation matrix, (2) three Euler 
angles (yaw, pitch and roll), and (3) four-element quaternion. First, we decided not to use 
the rotation matrix because (a) it can be constructed from the Euler angles or quaternions, 
and (b) it requires transmitting larger number of bytes (matrix entries) than the other two 
representations and hence adds unnecessary communication and computational cost. 
Second, we evaluated the pros and cons of Euler angles and quaternions. The major 
advantage of Euler angle representation over quaternion representation is its easy 
comprehension for humans. The disadvantage of Euler angle representation is its 
singularity point when yaw is near 90 degrees.  Another advantage of quaternion 
representation is the mathematical simplicity when performing rotation of one quaternion 
by another. Third, we have investigated the transformation uniqueness between rotation 
matrices derived from Euler angles or quaternions, Euler angles, and four-element 
quaternions. This seemingly trivial issue is complicated by the fact that the IS300 Pro 
reports angular values in left-hand coordinate system while all computer graphics and 
java3D libraries use right-hand coordinate system (see Figure 3). We have investigated 
conversions of (a) Euler angles to rotation matrix to Euler angles, (b) quaternions to 
rotation matrix to Euler angles, and (c) rotation matrix to Euler angles and quaternions. 
We have developed two different methods, GEMS [6] and TRTA [5], for this purpose. 
To the best of our obtained knowledge, we could not find a method that would recreate 
identical angles in the above (a), (b) and (c) transformations. An example of discrepant 
results is shown in Figure 4. 

Based on our scrutiny, we decided to directly acquire Euler angles, and avoid any 
angular and coordinate system transformations by modeling gestures directly with a 
combination of absolute angles (roll and pitch) and relative angles (yaw), work in the 
left-hand coordinate system. The singularity point in Euler angle representation was 
compensated by an appropriate design of our classification algorithm. 

 
Figure 3: Left-hand (left) and right-hand (right) coordinate system. 
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4 ATTACHMENT AND PLACEMENT OF SENSORS 

 
Sensor placement is crucial for obtaining repeatable and gesture unique 

measurements. Repeatability of measurements was improved by a thorough design of 
tight attachment mechanisms between sensors and a sensor base, and a sensor base and 
human arm. Sensors were attached firmly to a plastic flat board by two screws and the 
board edges had openings for Velcro armband strips, see Figure 2c. To assure minimum 
movement of the sensors it is recommended to place armbands tightly around skin rather 
than around any sleeves or other clothing. 

The issue of acquiring gesture unique measurements was addressed by 
investigating (1) different number of sensors per arm (two or three sensors per arm), (2) 
variable sensor locations and (3) several sensor orientations on a forearm or upper arm. 
The possible sensor placements are illustrated in Figure 5. 

We represent the human arm by three connected almost rigid segments 
corresponding to the upper arm, lower arm, and wrist. A sensor mounted on each of these 
segments captures the full range of motion of that segment and three sensors together 
capture the full range of motion of the arm. However, the fact that the IS300 Pro unit can 
handle at most four sensors limits us to only two sensors per arm. A closer analysis of the 
gesture lexicon suggests that the wrist segment gives the least amount of information 
about the whole arm orientation. Furthermore, through numerous experiments of 
collecting gesture data with three sensors on one arm, as in Fig. 3c, we determined that 
the user moves the wrist joint too rapidly, and also makes slight involuntary movements 

 
Figure 4: The problem of mapping between Euler angles, quaternions and rotation matrices. 
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that are not part of the target gesture. From this we conclude that two sensors per arm, 
mounted on the upper and lower arm are adequate for majority of the gestures in the 
lexicon. The placement of the sensors along their respective arm segments is also crucial. 
Placing the lower arm sensor near the wrist end allows for greater range of angles to be 
captured than by placing the sensor near the elbow, and this placement also gives a 
perfect representation for the facing direction of the palm. A physical support for greater 
rotational range at the wrist is due to the lower arm being composed of two parallel 
bones. To capture the biggest rotational range in the upper arm the sensor is placed near 
the elbow; because the flesh and muscles near the shoulder do not move with the upper 
arm bone. 

The starting rotational orientations were also considered. Either the sensors point 
sideways away from the body as in Figure 6a, or they point forward, Figure 6b. The 
sideway pointing location is preferred, because the upward pointing sensor location 
hindered the movement of the arm as the lower arm would hit the upper arm's sensor 
when the wearer bent the elbow more than 90 degrees. Another reason for choosing the 
sideways placement is that the armbands rotate slightly towards the sideway position with 
each movement of the arm, thus eventually fully rotating from the upward placement 
orientation to the sideways placement orientation. 

To prevent the weight of the wires from pulling on the sensors and making them 
move, it is helpful if the wearer holds the wires in his hands allowing just enough wire to 
be between the hand and sensor for free movement in all directions. 

 
Figure 5: Possible sensor placements on right arm (mirror image placement on left arm). a) 2 

sensors on top of arm, b) 2 sensors on side of arm, c) 3 sensors on side of arm. 
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5 REPEATABILITY ASSESSMENT 

 
In order to show repeatability among gestures, we need to understand how the 

Euler angles behave under different sensor motions. For this we analyzed the outputs of 
individual sensors against each other, as well as the combined output of the sensors in a 
gesture versus the output of the sensors in a repeat of the same gesture, or another 
gesture. The motivation for showing good repeatability among gestures is gesture 
recognition. 

       
Figure 6: Tested orientations: 2 sensors sideways, 2 sensors up, and 3 sensors sideways.  Last 

picture shows chosen sensor placement orientation (2 sensors sideways on both arms). 
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Figure 7: Book cover experiment with two sensors going through the same motion (3x repeated 90° yaw 
rotation).  The light blue and dark blue sinusoids are the yaws for the two sensors.  The four nearly 

constant lines at 0 are the pitches and rolls. 



Recognition of Arm Gestures by multiple Arm Mounted Orientation Sensors 
 

Automated Learning Group, NCSA 

5.1 Sensor Repeatability Analysis 
First we tried to see how reliable each of yaw, pitch and roll are, and also how 

close are the results from different sensors experiencing the same motion. To get the 
sensors to experience the same motion we attached two sensors to the cover of a 
hardback book, and positioned the book on a flat horizontal surface such that fully 
opening and closing the cover repeatedly, or rotating the book would only change one of 
the three Euler angles, while keeping the other two constant. Visualizing the results of 
each experiment showed that both sensors reported almost identical angle measurements. 

To assess individual sensor repeatability in real arm motions we experimented 
with mounting all the sensors on the lower arm and performing various movements to see 
how well the sensors' outputs compare to each other. One sensor placement was with the 
sensors on side of the arm and the other with the sensors on top of the arm as in Figure 9. 
The performed motions were raising and lowering the arm forward or sideways. The 
graphs of a repeated motion of raising the arm sideways from vertical to horizontal 
position are shown in Figure 7. From this experiment and the book cover experiment we 
conclude that all the sensors indeed report almost identical readings when experiencing 
equal motion and therefore they are reliable.  

Figure 8: Comparison of Euler angles acquired while moving arm sideways up three times (see (a)) with 
four sensors attached as shown in Figure 9b.  Graphs showing measured b) yaw, c) pitch, and d) roll angles.
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5.2 Gesture Repeatability Metric 
In order to quantitatively evaluate repeatability, we propose to use a Dynamic 

Time Warping (DTW) based metric that has been used in speech recognition domain [3] 
for matching words (sounds). The DTW algorithm accounts for different rates of the said 
words, which correspond to individual gestures in our case. First, the DTW algorithm 
finds the difference between two recordings of gestures one angle at a time, resulting in a 
numerical error for each angle. Second, the algorithm compares gesture-A (x-axis) with 
gesture-B (y-axis) by going only forward in time and making the best match at each 
sample pair (i, j), where i is a time sample from gesture-A and j is a time sample from 
gesture-B. To find the smallest value at each (i, j), the local distance is calculated first 
between the samples of gesture-A(i) and gesture-B(j), and then added to the lowest 
cumulative global distance from one of the three possible previous coordinates according 
to equation (1). 

( ).,,min 1,1,1,1,, −−−−+= jijijijiji DDDdD  (1) 

Figure 10 shows an illustration of DTW error computation for the in word 
“speech”. In our case, the local distance di,j is calculated according to (1) between one 
Euler angle from gesture-A and the corresponding Euler angle from gesture-B. Di,j is the 
overall error at times i and j for the chosen Euler angle in the two gestures. The final error 
EDTW between two gestures for one Euler angle is the last computed Di,j, where i and j are 

Figure 10:  Illustration of DTW algorithm used for comparing two instances of the word "speech".  In 
our case the letters are replaced by angle measures.  The picture shows the shortest global path from 

beginning to end, as well as the calculation of error at coordinates (i, j). 

Figure 9: Four sensors in a row on lower arm placements, a) on side of arm, b) on top of arm. 
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the final samples in their respective gestures. EDTW corresponds to the upper right corner 
of the illustration in Figure 10. By considering one Euler angle at a time, we obtain 12 
different global errors EDTW (3 angles for each of the 4 sensors). The total DTW based 
error ET for a pair of gestures is then computed by summing all global errors according to 
(2). 

( )∑
=

=
12

1i
DTWT iEE  (2) 

 

5.3 Experimental Results 
While conducting gesture comparisons, an arbitrary percentile of the same 

gesture’s recordings can be used as training data or as templates for classification. To 
select the best templates, six runs of each gesture were recorded and the three best were 
chosen by computing total DTW based errors. All-possible combinations of triplets (6 
choose 3) were evaluated by summing up the three pair-wise total errors for each triplet. 
For example, given the triplet of gesture sets 1, 2, and 3, the sum of total errors is equal to 
ET(1,2) + ET(1,3) + ET(2,3) (see Table 2). Minimization of the sum of total errors leads to 
the optimal selection of training data. 

Table 1: Rankings of 20 gestures from lexicon, from 1 being most similar to others to 20 being most 
different from others.  All directions refer to the orientation of the pilot in the aircraft, unless 

otherwise noted. 

Rank Gesture name 

1 Turn To Right 
2 Turn To Left 
3 Launch Bar Up 
4 Up Hook 

5 Down Hook 
6 Move Ahead 
7 Disengage Nose-gear Steering Left 
8 Fold Wings 
9 Launch Bar Down 
10 Move Back 
11 Spread Wings 
12 Engage Nose-gear Steering Left 
13 Pivot To Left 
14 Pivot To Right 
15 I Have Command (Yellow shirt’s left arm is up) 
16 Brakes 
17 Slow Down 
18 Pass Control (To yellow shirt’s left) 
19 Stop 
20 Slow Down Engines on Right 

Table 2: Chart with total DTW errors of 6 “Move Ahead” trials, showing that gestures 2, 3, and 6 
are the most alike. 

 2 3 4 5 6 
1 21847 22242 26555 32440 28448 
2   10783 18124 19220 16395 
3    19880 18179 16393 
4     22184 16918 
5   18786 
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We also compared all 20 gestures from the NAVY lexicon [2] to each using the 
DTW based metric. The results showed that gestures “turn to left” and “turn to right” 
appear to have the highest similarity to the rest of the gestures and hence might be 
misclassified more likely than other gestures. However, the ET values for these two 
gestures are larger than the ET values for gesture repetitions by a factor of at least three. 
The ET value for a pair of the gestures “slow down” and “slow down engine on indicated 
side” leads to the largest value among ET values for all pairs of gestures and therefore 
these two gestures should be classified with the highest confidence. We also ranked all 20 
NAVY gestures based on the global error ET. The ranking of gestures from least 
repeatable to most repeatable is shown in Table 1 and the error values are shown in Table 
3. A lower value of ET means that a gesture is more similar to the rest and thus less 
repeatable. 

5.4 Data Visualization 
The data is captured in sets, with each set containing a timestamp (milliseconds 

from power on or last reset), and 3 (Euler angles) or 4 (quaternion) values for each of the 
four sensors.  The baud rate of the connection between the PC and the base unit 
determines the length of the time intervals, which are about 5-10 milliseconds at the 
highest setting of 115,600 baud.  The lowest available transmission rate is 9600 baud.  
However since the human arm cannot make significantly large movement changes in 
such small time intervals, it is reasonable to down-sample the collected data to about 10 

Table 3: A gesture dissimilarity matrix formed by comparing all pairs of gestures from the NAVY lexicon 
using the proposed DTW metric. Small values indicate high similarity. Color-coded entries show values 

below 70,000 (green); or below 60,000 (yellow); or below 50,000 (orange). 

  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Brakes 1 80 90 128 94 87 87 85 81 108 108 95 99 120 168 100 110 80 67 70

Disengage Nosegear 2  65 71 81 78 85 61 67 78 104 67 96 96 143 92 142 54 63 67
Down Hook 3   72 73 97 69 60 85 69 102 99 82 104 102 76 124 72 66 48

Engage Nosegear 4    94 85 105 67 75 91 106 97 107 103 129 100 139 47 66 85
Fold Wings 5     115 65 46 78 92 94 75 101 93 157 67 92 77 73 72

I Have Command 6      106 85 97 88 101 91 110 112 77 109 165 63 81 74
Launch Bar Down 7       52 71 94 108 110 71 123 122 80 97 95 81 44

Launch Bar Up 8        62 79 104 93 93 94 113 72 101 69 60 58
Move Ahead 9         70 91 82 82 90 145 74 106 63 62 81
Move Back 10          110 84 77 78 103 80 142 66 60 93

Pass Control 11           110 116 107 152 105 105 97 112 95
Pivot to Left 12            108 87 127 96 137 40 85 104

Pivot to Right 13             109 126 86 140 73 44 71
Slow Down 14              150 68 106 86 97 126

Slow Down Engines on side 15               152 220 123 96 88
Spread Wings 16                88 76 70 91

Stop 17                 126 126 127
Turn to Left 18                  41 81

Turn to Right 19                   69
Up Hook 20                    
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samples per second.  This will allow for faster processing times during various 
calculations such as classification. 

To help us analyze the results we created our own software for data visualization 
in real time capture, which allows us to detect any glitches in the captured data by eye.  
Our software allows us to choose and display any or all of the angles and sensors in 
multiple windows, as opposed to the IS300 demo software, that came on a CD with the 
hardware, only showing the orientation of one inertia cube at a time.  An example of 
visualization software is in Figure 11. 

 
6 CLASSIFICATION AND ROBOT CONTROL 

 

6.1 Classification 
One attempted method of classification was a template-based method using the 

DTW.  Six repeated recordings were taken for each of 11 different gestures (turn to right, 
turn to left, launch bar up, move ahead, pivot to right, pivot to left, brakes, slow down, 
pass control, stop, slow down engines).  In each set of six the DTW error was calculated 
pair-wise, then for each of the six recordings the sum of the DTW errors versus the other 
five was calculated.  From each set the gesture with the lowest sum was chosen as the 
template for that gesture.  Then four more recordings of each of the eleven different 
gestures were collected and compared to the eleven templates.  The recordings were 
classified to be the template with the smallest matching DTW error.  These 44 tests had 
91% accuracy.  Also it was found that all the best matching templates gave DTW error 
values smaller than 65,000.  This means that 65,000 can be used as a good threshold 
value to mark gestures as unknown.  Results are shown in table 4. 

When only five of the eleven templates were used (best five according to gesture 
rankings: brakes, slow down, pass control, stop, slow down engines) in conjunction with 
the threshold of 65,000 the accuracy of the classification was 95%. Results are in Table 5. 
One setback of this classification method is that it is very time consuming, as the 
classification time grows linearly with the number of templates used.  This makes it 
practically unusable for real time classification. 

Figure 11: Example of our developed real time visualization (left) vs. IS300 Demo (right). 
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6.2 Robot Control 
 

The final, and probably the simplest, step is to create a mapping between the 
gesture lexicon and robot movement instructions.  Few examples are shown in Table 6. 

Table 4: Result of gesture classification with 11 templates and four repetitions of each of the 11 
gestures. Green numbers show correct classification, orange shows incorrect classification. 

  1 2 3 4 5 6 7 8 9 10 11 
TurnToRight 1 4                     
TurnToLeft 2   0    4      

LaunchBarUp 3    4         
MoveAhead 4     4        
PivotToRight 5      4       
PivotToLeft 6       4      

Brakes 7        4     
SlowDown 8         4    

PassControlMyLeft 9          4   
Stop 10           4  

SlowDownEngines(MyLeft) 11            4 

Table 5: Result of gesture classification with 5 templates and four repetitions of each of the 11 
gestures, with a threshold to determine unknown gestures. 

  1 2 3 4 5 Unknown 
Brakes 1 4           

SlowDown 2   4     
PassControlMyLeft 3    4    

Stop 4     4   
SlowDownEngines(MyLeft) 5      4  

TurnToRight 6    1   3 
TurnToLeft 7       4 

LaunchBarUp 8    1   3 
MoveAhead 9       4 
PivotToRight 10       4 
PivotToLeft 11 4 

Table 6: Examples of some gesture to robot instruction mappings. 

Gesture Robot Instruction 

Move Ahead SETVEL2 40 40 
Turn To Left SETVEL2 30 40 

Turn To Right SETVEL2 40 30 
Brakes STOP 

Pivot To Left SETVEL2 –30 30 
Pivot To Right SETVEL2 30 –30 

Slow Down MULTVEL 0.8 
Move Back SETVEL2 –40 -40 

Slow Down Engines on Left MULTVELL 0.8 
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7 CONCLUSION 

 

7.1 Summary of Current Work 
In building our system we first considered the advantages and disadvantages of 

existing technologies that could be used in gesture sensing in Section 2.  Some 
technologies we considered such as the cyberglove [8] or the MEMS glove from UC 
Berkeley [8] were more appropriate for hand and finger gestures than whole arm 
gestures.  Passive sensing such as video recognition was also considered but due to the 
possibility of bad visibility on Navy aircraft carriers we decided to use an active sensor 
method.  This led us to the IS-300Pro Precision Motion Tracker by InterSense [1].  In 
Section 3 we discussed the IS-300Pro unit’s parameters.  The unit can have up to four 
cubes connected to it, and these InertiaCubes can detect their orientation in 3D space.  
These orientations can be reported to the computer, which is connected to the base unit, 
in the form of Euler angles, quaternions or rotation matrices.  We chose Euler angles, 
because they can be easily understood and interpreted by humans, and also because they 
require less bandwidth when sending packets from the IS-300Pro base unit to the 
computer.  We tested different attachment locations of the InertiaCubes to the human 
user’s arms in Section 4.  The attachment locations chosen were two sensors per arm, one 
located on the upper arm near the elbow, and the other on the lower arm near the wrist.  
The facing of the sensors is sideways away from the user when the arms are held 
vertically next to the body.  In Section 5 we introduced the metric called Dynamic Time 
Warping for measuring the repeatability of these gestures.  We also ranked the 20 
gestures from the Navy lexicon [2] according to similarity to each other.  Finally, in 
Section 6 we use the DTW to form a template based method of arm gesture recognition, 
and presented some test results of this system.  The robot movement to gesture mappings 
were also presented in Section 6. 

7.2 Challenges 
During the experiments, we have resolved several challenges related to (1) yaw 

variation due to flight director’s orientation, (2) angular offset due to sensor attachment, 
and (3) singularity points of Euler angles. First, processing only relative values 
compensated the yaw variation. Second, periodically running repeatability experiments 
and mending any loose sensor attachment detected the angular offset. Third, an 
appropriate gesture modeling compensated the occurrence of singularity points. 

In the real environment of an aircraft carrier there are challenges related to (1) a 
UAV following gestures from a flight director that is not located within its line of sight, 
(2) approximately ±6° orientation variation due to back and forth rocking of the aircraft 
carrier, and (3) gestures deviating from a lexicon that are caused by flight director’s 
fatigue.  First, video recognition could be used to determine whether an active flight 
director is in the UAV’s line of sight.  Second, the orientation sensors of each flight 
director could be normalized to the orientation of the aircraft carrier.  Third, a system 
detecting continuously increasing deviations of performed gestures from lexicon-defined 
gesture could be used for alerting flight directors about their fatigue.  
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7.3 Future Work 
In the future it would help if the sensors became wireless.  This could solve some 

problems a flight director (an operator) might have with tangled wires, as well as remove 
the need for an operator to wear the base device on his/her body.  More reliable and 
smaller sensors would also be helpful in improving the repeatability and successful 
recognition rates. 

The hand gesture tracking can be used anywhere where communication by sound 
is impossible, either due to requirements of silence, such as in covert commando 
operations, or in loud places, such as construction sites.  Another future application of 
this technology could find the use by deaf and mute persons in order for them to 
communicate with people that do not understand sign language, for instance, by 
connecting the gesture recognition technology to a voice synthesizer. 
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