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Abstract 
 
While considering all existing hazards for humans due to (a) natural disastrous events, (b) 
failures of human hazard attention or (c) intentional harmful behaviors of humans, we 
address the problem of building hazard aware spaces (HAS) to alert innocent people. We 
have researched and developed components of a prototype HAS system for detecting fire 
using wireless “smart” micro electro-mechanical systems (MEMS) sensor networks, such 
as the MICA sensors manufactured by Crossbow Inc., and spectral cameras, for instance, 
thermal infrared (IR), visible spectrum and multi-spectral cameras. Within this context, 
the paper overviews technical challenges and prototyped scientific solutions to (1) robotic 
sensor deployment using remote control, (2) synchronization of sensors and cameras, (3) 
localization of sensors and objects, (4) calibration of measurements from sensors and 
spectral cameras, (5) proactive camera control, (6) hazard detection, (7) human alert, (8) 
hazard confirmation and understanding, and (9) hazard containment. The work presents 
innovative signal processing applications of sensor network technology, and includes also 
theoretical and practical limitations that have to be understood while working with novel 
technologies. 

 

1. Introduction 
Wireless sensing devices are frequently used in smart spaces, ubiquitous and proactive 
computing, and situation awareness applications [35], [44], [47]. One could list a plethora 
of applications suitable for the use of wireless sensor networks and other sensing 
instruments, for instance, health care (wellness system for aging), environmental 
monitoring (pollution of air, water, and soil), atmospheric science (sever weather 
prediction), structural health monitoring (equipment or material fatigue detection), 
military surveillance (vehicle movement detection), wild life monitoring (animal 
migration), or intelligent vehicle design (obstacle detection) [11], [16],  
[24], [45], [32]. The list of on-going wireless sensor network projects is also growing 
every day (see NSF and NIST projects [26], [31], [38], [39], such as NSF NEON, 
LOOKING, SCCOOS, ROADNet, USArray, TeraBridge, ORION, CLEANER or NIST 
SHIELD). We have been interested in the hazard awareness application scenarios [4], [5] 
that concern humans due to (a) natural disastrous events, (b) failures of human hazard 
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attention or (c) intentional harmful behaviors of humans. Our focus is on the problems 
related to building hazard aware spaces (HAS) to alert innocent people. 
 
While building a real-time HAS system, one has to address the issues of (1) setting up the 
system to achieve desired accuracy and (2) operating it to achieve reliable performance 
with or without human intervention. In order to setup a HAS system, one ought to find 
ways how to deploy sensors, synchronize them, localize sensors and other instruments in 
the environment, and calibrate measurements coming from wireless sensors and 
instruments to obtain values represented in engineering units (for example, a raw value of 
temperature has to be converted to degrees of Celsius). These steps for HAS preparation 
allow us to answer questions about when, where and what hazards occur during the 
operation of a HAS system. In addition, one has to understand the limitations of ‘smart’ 
wireless sensor networks (WSN), such as low-power, broadcast range, available on-board 
memory and CPU, to optimize the layout of sensor networks in terms of minimal wireless 
loss, minimal energy consumption and maximal information content received from the 
network. From the perspective of operating a HAS system, the objective is to perform 
reliable proactive data acquisition, hazard detection, human alert, hazard confirmation 
and possible understanding of specific hazard characteristics, and finally hazard 
containment. These building steps have been reflected in our research and development, 
and are illustrated in the overall HAS schema in Figure 1.  
  

Figure 1: An overview of several components of the hazard aware spaces (HAS) 
prototype. The top components represent the setup of HAS while the bottom components 
correspond to the operation of HAS. 
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2. Research and Development Challenges 
Research and development of HAS poses several fundamental challenges in the areas of 
sensing, remote and proactive control, wireless data acquisition, wireless communication, 
signal and image processing, and detection and pattern recognition. It is the 
understanding of these issues that leads to an optimal real-time system design of HAS. In 
this paper, we elaborate on the research themes about (a) adaptive remote HAS setup, (b) 
measurement accuracy and sampling rate, (c) communication bandwidth control and 
information selection, (c) hazard understanding from sensor and image data, (d) human-
computer interfaces for human alert, and (e) the use of robotics in HAS  application 
domains. The research themes map into a development of technology components 
illustrated in Figure 1 and include (1) deployment of point sensors using remote robot 
control, (2) synchronization of sensors and cameras, (3) localization of sensors and 
objects, (4) calibration of measurements from sensors and spectral cameras, (5) proactive 
camera control, (6) hazard detection, (7) human alert, (8) hazard confirmation and 
understanding, and (9) hazard containment. The rest of this paper presents hardware and 
software for building a prototype HAS system, and theoretical and experimental solutions 
to the aforementioned research and development technology components. 
 

3. Hardware and Software Description 
In our HAS system design, we used the MICA hardware that is manufactured by 
Crossbow Inc. The MICA hardware consists of (1) 4MHz Atmega 128L processor, (2) 
128K bytes Flash, 4K bytes SRAM and 4K bytes of EEPROM, (3) 916MHz radio 
transceiver with a maximum data rate of 40Kbits/sec, (4) attached AA (2) battery pack 
and (5) plug-in sensor boards like the MTS101CA, attached through a 51-pin expansion 
connector. For more details, see [25], [14], [15], [39], [40]. 
 
The MICA sensors are deployed using an intelligent wheeled robot P2DX8 made by 
ActivMedia Robotics, Amherst, NH, [1] and an on-board computer-processing unit for 
real-time processing. The robot has a ring of 8 forward sonar sensors that can be used for 
obstacle avoidance and a two-wheel drive plus balancing caster for smooth motion. The 
robot is connected to a laptop that is either directly cable-connected to the local area 
network or wirelessly connected with other computers. For the gesture-driven remote 
control of the robot, we used the IS-300 Pro Precision Motion Tracker by InterSense, 
MA, [18] with the update rate of 500 Hz, weight of 15 oz, and angular resolution of 0.02 
Deg. It measures yaw, pitch and roll using a miniature solid-state integrated inertial 
instrument “InertiaCube” and these temporal signals serve as inputs to our gesture 
recognition algorithm. For the voice-driven remote control, we used wireless audio 
sensors by Audio-technica Corp. To obtain video feedback from the robot, we mounted a 
pair of wireless miniature color cameras by Samsung on the robot’s platform. 
 
The hazard aware space was equipped with a visible spectrum camera (Network Color 
Camera SNC-RZ30N PTZ Pan/Tilt/Zoom by Sony, and Canon PowerShot SD100 digital 
camera) and by a thermal infrared (IR) camera, (the Omega model by Indigo Systems 
Corporation, Goleta, CA). The thermal IR camera is a long-wavelength (7.5-13.5 
microns) uncooled microbolometer camera designed for infrared applications. It is 
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controlled via RS232 serial port and the analog NTSC video output is digitized using a 
Hauppauge WinTV board. For temperature calibration experiments, we used a regular 
thermometer used by chemists as the temperature gauge. It is measuring temperature 
directly in engineering units of degrees Celsius and providing temperature readings in the 
range [-40°C, 150°C] with a reading uncertainty equal to ±1°C. A set of preliminary 
experiments to discriminate burning materials was performed with a hyperspectral 
camera by Opto-Knowledge Systems Inc. This camera is based on a liquid crystal tunable 
filters (LCTF) technology and operates in two wavelength ranges, such as visible 
[400nm, 720nm] and near infrared [650nm, 1100nm]. 
 

4. Sensor Deployment 
When it comes to deploying a large number of sensors in a potentially hazardous 
environment, one would like to engage robots for sensor deployment. The challenges lie 
in combining the capabilities of robots with a remote robot control that would be human 
friendly. We addressed the above challenges by exploring multiple inputs for remote 
robot control including voice, gestures and human-computer interfaces (HCI), and 
developing real-time recognition algorithms [21], [42], [43].  
 
The remote robot control system consists of three basic software components including 
(a) acquisition and recognition of control commands from multiple inputs, (b) client-
server network communication, and (c) command fusion and execution by a robot and its 
arm. The inputs for recognition of control commands come from (1) wired or wireless 
microphones, (2) wired orientation sensors mounted on human arms, and (3) HCI 
devices, such as a mouse, a keyboard or a text file with the sequence of control 
commands. The set of gesture commands is based on the US Navy lexicon for navigating 
aircrafts on the ground. Fusion of multiple commands is performed by (a) analyzing time 
delays and (b) assigning different priorities to commands and the clients issuing those 
commands. Consistent and conflicting commands are considered before a selected 
command is executed by a robot. For an emergency control, a video signal is sent to a 
monitoring station. The overview of the system with multiple inputs is presented in 
Figure 1. 
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Figure 2: An overview of a system for remote robot control using sound, gesture and 
human-computer interface inputs. 
 
First, we implemented robot control using HCI inputs. A user can use a keyboard and 
type in commands of his choice and their corresponding parameters.  Second, we 
developed a template based speech recognition system so that typing can be replaced by 
more user friendly interface.  Third, we added a gesture recognition system to 
accommodate remote control execution in very noisy environments, for instance, a carrier 
deck. Finally, we enabled robot arm control via mouse and keyboard interfaces in order 
to perform simple loading and unloading operations. For emergency control purposes, we 
mounted a wireless camera on the platform of a robot to obtain video feedback. 
 
In terms of system architecture, the software is designed based on a client-server 
paradigm. All input devices (microphones, orientation sensors, keyboard and mouse) are 
attached to multiple computers that represent the clients in the developed system. In our 
laboratory experiments the robot is connected to a laptop using the RS232 connection.  
This laptop acts as a server and accepts TCP client connections over the network.  Each 
client can issue control commands to the robot by sending commands to the server 
laptop. The server fuses the commands from all clients, and resolves any conflicts that 
may occur. After command conflicts are resolved the commands are translated to a set of 
robot instructions. These instructions are sent to the robot via the RS232 connection, and 
are then executed. 
 
The command signal processing flow is illustrated in Figure 2, and it presents the fusion 
of multiple robot controls. According to Figure 2, data are acquired first by using one of 
the previously mentioned controls. After the data are collected, they are classified using a 
recognition algorithm into one of the 21 possible taxiing commands (text and arm inputs 
do not require classification). Once the command is recognized, it is sent as a packet over 
a local area network (LAN) to a server that is directly connected to the robot. Next, the 
server fuses all incoming commands and decides which one will be sent to the robot. 
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These commands are then translated to robot instructions which are executed by either 
the robot or its arm. Finally, a camera mounted on the robot provides video feedback that 
acts as another client controlling the robot. The server can handle multiple client 
connections at once and decides what commands should be executed. 
 

 
Figure 3: The signal processing and communication flow in a remote robot control 
system.  
 
We are currently working on a new client application that will track an object and the 
robot will follow it. This can be used in two different scenarios. In the first scenario the 
robot will follow a person (see Figure 4 left) tracking the color of the shirt of the person. 
In the second scenario the robot will scan the room for flames and move towards the 
flame (see Figure 4 right). In both cases the system will use the camera mounted on the 
robot platform to take video snapshots of the environment. The video snapshots are 
analyzed in real-time to detect objects of known color and bound by changes of the 
projective region size that is adaptively adjusted over time to accommodate for “zoom 
effects.” (object is growing as it comes closer to a camera)  The tracking system is trained 
with a specific color of an object of interest prior to execution.  
 
In order to use multiple color cameras without re-training the colors, one has to develop 
mappings from one RGB camera to another RGB camera since the cameras report 
different color values even if the viewed object is the same. For example, one encounters 
the problem of color camera mapping when a camera mounted on the robot platform is 
broken and replaced, or the tracking system is passing the tracking task from mobile 
camera to a static pan/tilt/zoom camera in a room. This leads to an interesting problem of 
how to make sure that red viewed by camera 1 is the same red viewed by camera 2. We 
will show a solution to this problem in section 10.1. 
 



Technical Report: isda06-002 
June 1, 2006 
 

Bajcsy, Kooper, Scherba and Urban, NCSA, UIUC 

 
Figure 4 Robot tracking a person on left, and robot tracking flames in a room on the right. 
 

5. Synchronization of Sensors and Cameras 
In order to obtain useful sensor readings, one would like to know when the sensor 
readings were taken. Thus, our goal was to synchronize cameras with the deployed 
MICA sensors, or the MICA sensors with cameras. 

5.1. Temporal synchronization 
To achieve the synchronization goal we have to collect the data from both cameras and 
MICA sensors with accurate timestamps. These timestamps combined with the location 
of each sensor and camera would allow us to associate a MICA sensor value with an 
image pixel value. Based on our synchronization needs, we designed and developed a 
temporal calibration technique that follows the schema in Figure 5. 
 

 
Figure 5: A schema for time synchronization of MICA sensors and cameras. 
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Cameras are attached to a PC and the PC uses its internal clock to set a timestamp for 
every captured image (the time the first bit of the image is received). If cameras are 
attached to multiple PCs then the PCs are synchronized using the standard NTP 
synchronization protocol. The MICA sensors communicate through an interface board 
with either the same PC as one of the cameras, or a different PC. In the case of the 
different PC we assume the camera PCs and the MICA PC are synchronized using the 
standard NTP synchronization protocol. 
 
The MICA sensors can be viewed as small autonomous PCs. We need to synchronize the 
time of these small PCs with the PC receiving data. One approach is let the PC time-
stamp the incoming messages. However, if there are some delays in the network or due to 
processing of the incoming messages, then the timestamps of the MICA sensor readings 
would be incorrect. We approached this problem by implementing a simple time 
synchronization of the MICA sensors with the PC. At the MICA initialization, the PC 
will send the current time to each of the MICA sensors. A MICA sensor will update this 
timestamp every Xms (X=10 in our case). Each reading on the MICA sensor will be sent 
back to the PC with the timestamp of the reading. One can also compensate for the 
network transfer time (or round trip time). If the difference between when the reading is 
taken by the MICA sensor and the time when the reading is received by the PC is larger 
than Yms (Y=350 in our case), then the PC and the MICA sensors will resynchronize 
their time. 
 

5.2. MICA sensor time measurements 
With the TinyOS development environment comes a generic application called TinyDB 
[40]. This application is a general purpose tool which makes it easy to obtain sensor 
readings from the MICA sensors. The syntax for requesting MICA readings is a SQL like 
language. For example, to request the current temperature on the MICA sensors every 
500ms we can simply issue a TinyDB query “SELECT temp FROM sensors 
EPOCH DURATION 500”.  
 
Unfortunately, we observed after some initial experiments that the time between the 
sensor reading and the PC time was increasing. Figure 6 shows the time difference 
between MICA sensor and the PC clock (Y-axis) as a function of the time when the 
reading was taken (X-axis). We also noticed that with “EPOCH DURATION” less than 
400ms we would not receive as many readings as expected. These two problems made us 
discard this general purpose application and create a custom application for the MICA 
sensors.  
 
The described time problem is caused by the MICA sensors using 1024 ticks per second, 
while all TinyDB applications are using 1 tick equal to 1ms. This discrepancy leads to 
2.5% error in the timing. The time problems were corrected in our custom application as 
it is illustrated in Figure 7 (removed temporal dependency of variables). In addition, the 
use of our custom application simplifies the request and data transfer and speeds up the 
time between requesting data being transmitted and receiving the first data. 
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Regarding data transmission, data can be transmitted across a network using TCP 
(Transmission Control Protocol), UDP (User Datagram Protocol) or a custom protocol. 
When data is transmitted using TCP the network layer will make sure no messages are 
lost and any lost data are retransmitted. UDP on the other hand does not make any 
guarantees about delivery of the data, often referred to as best effort. We know that data 
are transmitted at a high rate. Any lost message can be safely ignored since we know 
more up-to-date information will be transmitted shortly. It is our understanding that 
TinyDB uses a TCP like protocol where it guarantees no message is lost. From the data 
transmission perspective, we ignored lost messages since (a) we do not need all messages 
and (b) we are only interested in the most recent measurement. 
 

 
Figure 6: Time difference between MICA sensors and the PC clock (Y-axis) as a function 
of the time when the reading was taken (X-axis). Results obtained using TinyDB 
software. 
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Figure 7: Time difference between MICA sensors and the PC clock (Y-axis) as a function 
of the time when the reading was taken (X-axis). Results obtained using custom software. 
 

6. Localization of Sensors and Objects 
Another important aspect of any HAS system is the knowledge of where hazards occur. 
The general problem of 3-D information recovery has been addressed in the past by many 
researchers in the computer vision, machine vision and signal/image processing 
communities [9], [23], [29], [46] and in the wireless communication community [3], [27], 
[49], [50]. The motivation for obtaining 3-D information often comes from applications 
that require object identification, recognition and modeling. In the case of HAS, one 
would like to determine locations of the deployed wireless MICA sensors and of other 
objects in the scene assuming that the camera locations are known.  
 
The problem of 3-D information recovery is difficult regardless of whether it addresses 
static or dynamic object location estimation. In the past, the problem of depth recovery 
was approached, for example, (a) by vision techniques referred to as shape from cues [28] 
where cues can include stereo, motion, shading, etc…, and (b) by communication 
techniques frequently referred to as location sensing (radio or ultrasound time-of-flight 
lateration or signal strength analysis [14]). Although the vision and location sensing 



Technical Report: isda06-002 
June 1, 2006 
 

Bajcsy, Kooper, Scherba and Urban, NCSA, UIUC 

techniques have been proposed, very few methods are robust and accurate enough to be 
used in real-time applications. It is well known that many of the depth estimation 
algorithms are computationally expensive with limited robustness and accuracy in most 
unconstrained, real-life applications. The need for improved robustness and accuracy of 
depth estimation motivated our work on stereo and wireless sensor location fusion. 

 
Our approach to the 3D information recovery problem is based on fusing localization 
data from wireless sensor networks with depth maps obtained through computer vision 
stereopsis [36]. One could envision performing (1) depth map calibration, (2) sensor 
location calibration, or (3) depth map and localization fusion. A flowchart depicting the 
entire process from raw data to calibrated or fused information is shown in Figure 8.  We 
have performed several experiments with synthetic and measured data using the 
Crossbow MICA2 motes, TinyOS, and Image to Knowledge (I2K) implementation of the 
stereo algorithm [8]. 
 

 

 
 

Figure 8. Flowchart of Sensor Fusion 
 

The first component of our fusion system is a pair of visible spectrum cameras (Canon 
PowerShot SD100 digital cameras).  Contrary to wireless sensor networks (WSNs), 
cameras are viewed as traditional sensors and have proven to be reliable, relatively 
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inexpensive, and suitable for collecting a dense set of measurements (a raster image) 
from their environment.  Many techniques have been developed in the past two decades 
that can extract shape information from images and video [46], and using multiple cues 
[28]. In our HAS system, we use the stereopsis algorithm implemented in I2K software 
[8] to derive a depth map.  
 
The second component of our fusion system is the localization of wireless sensors. In our 
work, we use the MICA sensor capability to record sound with a microphone and 
broadcast sound with a speaker. MICA sensor locations are determined via an acoustic 
time-of-flight ranging technique.  Acoustic time-of-flight ranging is both an accepted and 
easily implemented ranging technique. Figure 9 shows the strategy of time-of-flight 
ranging we implemented.  The first step is to send a message to a ranging endpoint node.  
The endpoint node, after receiving the message, simultaneously broadcasts a radio 
ranging message with a 4 kHz chirp.  Every node in the network is configured to listen 
for the radio ranging messages and starts a timer which stops when the audible chirp is 
heard.  A broadcast message announcing the distance between the endpoint and receiving 
nodes is then sent for all who are interested. 
 
 
 

 
Figure 9. Acoustic Time-of-Flight Ranging. BS is the base station connected to a 
computer. The MICA2 motes are labeled a, b and c. 
 
 
Finally, the third component is the fusion of sensor localization and stereo depth map 
results. This operation is performed by (a) registering the localization and depth map 
data, (b) estimating the uncertainty of localization and depth map data as a function depth 
distance, and (c) fusing the two data by minimizing the uncertainty over the entire depth 
range. The registration problem is approached by either global optimization or local 
model-based fitting. The global optimization is achieved by minimizing the difference 
between depth values and localization values in the least squares sense by solving a non-
linear set of equations (number of MICA sensors is equal to the number of equations) 
using a downhill simplex search. The local model-based fitting approach assumes that a 
set of apriori known sensors is co-planar. Then, the registration is performed by (a) fitting 
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a 3-D surface to a set of apriori known co-planar sensor locations, and (b) computing the 
registration transformation parameters.  
 
In order to fuse the data, the uncertainty of localization and depth map data as a function 
depth distance is estimated theoretically and verified experimentally. The theoretical 
uncertainty estimates are derived from a stereo depth disparity equation and from 
modeling point-point ranging/localization error. Figure 10 shows the determination of a 
fusion threshold for a particular choice localization and depth map uncertainties. We 
developed simulation capabilities for any range of input uncertainties to determine 
desired fusion thresholds as illustrated in Figure 11. 
 

 
Figure 10: Uncertainty of localization and stereo depth map as a function of depth 
(distance from camera). 
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Figure 11: Theoretical predictions of fusion threshold from the intersection of two 
surfaces representing depth map uncertainty and localization uncertainty as a function of 
distance from camera. Left – intersecting surfaces for variable point-to-point 
ranging/localization error and fixed depth map error. Right – intersecting surfaces for 
variable stereo depth map error (proportional to image matching uncertainty) and fixed 
point-to-point ranging error.  
  
To illustrate the last step of the fusion component, we performed laboratory experiments 
according to Figure 12. The pair of input stereo images is shown in Figure 13. We fused 
the localization and stereo depth map data sets by minimizing the uncertainty over the 
entire depth range. The resulting depth map is shown in Figure 14 and the accuracy 
improvements are summarized in Table 1. The results in Table 1 demonstrate a 
significant promise of the prototyped solution and its effectiveness.   

 
Figure 12: Schema of laboratory experiments to demonstrate localization and stereo 
depth map fusion. The MICA sensors are arranged in a (y,z) plane and communicate with 
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the base station attached to a computer illustrated above. The stereo pair of pictures is 
taken along the horizontal x-axis that is perpendicular to the sensor plane. 
 

  
Figure 13: A stereo pair of images taken for the fusion laboratory experiments. 
 

 
Figure 14: Resulting depth map after fusing localization and stereo depth map data. Left 
– input depth map, middle – pseudo colored depth after fusion, and right – the color 
legend showing the range of depth values in the pseudo colored depth map. 
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Table 1: Fusion results evaluated in terms of accuracy improvement.  
Data types Error [m] Accuracy Improvement [%] 
Localization error before 
fusion 

1.19 

Localization error after 
fusion 

0.87 

27% 

Depth map error before 
fusion 

31.06 

Depth map error after 
fusion 

0.72 

98% 

Sum of data errors before 
fusion 

32.25 

Sum of data errors after 
fusion 

1.59 

95% 

 
 

7. Calibration of Measurements from Sensors and Spectral 
Cameras 

 
Our objective is to detect and recognize hazards, for instance fire. A combination of 
MICA temperature sensors and thermal IR cameras provides a desired test bed of fire 
sensing capabilities. We strive to perform continuous low bandwidth data acquisition 
using MICA sensors to monitor fire hazards and then trigger high bandwidth data 
acquisition using thermal IR cameras to recognize types of fire hazards (e.g., shape of 
flames and their spatial extent).  
 
The use of both, MICA sensors and thermal IR cameras, requires accurate calibration of 
raw sensor readings and camera pixel values. One has to convert sensor and camera raw 
values into engineering units, such as degrees of Celsius or Fahrenheit or Kelvin, 
otherwise the raw values cannot be used for detection and recognition purposes.  This 
conversion is also denoted as a spectral calibration since temperature (a variable 
representing thermal wavelength range) could be replaced by any other spectral variable, 
for instance, a variable that represents visible spectrum, near infrared or radar 
wavelengths. Figure 15 shows our proposed schema for calibrating raw values. We view 
this step as one of the many necessary steps leading to scene and hazard understanding.  
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Figure 15: Calibration schema for MICA sensors and spectral cameras using an 
appropriate spectral gauge. We used temperature sensors on a MICA sensor board, 
thermal IR camera and a thermometer as a calibration gauge in our experiments.  
 

7.1. Calibration of Thermal IR Camera using MICA Sensor Readings 
First, we explored the calibration of thermal IR images using pre-calibrated MICA sensor 
readings. The problem of thermal IR camera calibration occurs in all application domains 
where automation using machine vision is highly desirable. One can find the need for 
thermal IR camera calibration in many other areas, for instance, in remote sensing 
(radiometric and photogrammetry calibration of aerial and satellite imagery), robotics 
(vegetation detection using near calibrated infrared and red wavelength imagery), 
astronomy (brightness estimation of stars using thermal IR imaging of the sky) or 
military (battlefield analyses). We foresee the use of widely distributed and deeply 
embedded “smart” micro electro-mechanical systems (MEMS) sensors as potential 
thermal IR calibration gauges for thermal IR cameras in future.  
 
A simple calibration hardware setup is shown in Figure 16. The calibration procedure can 
be described as follows assuming that all sensors and cameras were synchronized and 
their locations are known. First, MICA sensors are programmed to sense and send 
temperature readings over a certain time period. Second, during the same time period, 
temperature measurements are collected with a thermometer (a calibration gauge). Third, 
a calibration transformation is established for MICA temperature sensors using a factory 
recommended formula and verified with thermometer measurements. Fourth, both 
thermal IR camera and MICA sensors are initiated to acquire data by broadcasting a 
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RESET signal to MICA sensors and triggering thermal IR camera acquisition. Fifth, 
MICA sensors transmit every set (packet) of temperature measurements with the state of 
the internal counter (time stamp) to the base station attached to a personal computer (PC). 
In meantime, the thermal IR camera acquires data with the time stamp of the CPU clock 
counting from the RESET signal. Sixth, the MICA raw temperature measurements are 
received and transformed into degrees Celsius. Seventh, MICA temperature sensor 
locations in the thermal IR image are identified, and statistics of the transformed MICA 
temperature measurements and the thermal IR image pixel values at the MICA sensor 
locations are related to form the final calibration transformation. In this step, if the entire 
scene viewed by a thermal IR camera is temperature homogeneous then MICA 
temperature sensor locations in the thermal IR image do not have to be identified and 
statistics of the thermal IR image can be computed over the entire image. Illustrations of 
raw and calibrated thermal IR images are in Figure 17 and Figure 18. 

 

 
 

Figure 16 Left – A schema of the experimental setup. Right - The MICA sensor locations 
viewed with a visible camera. The tiny black spot in the middle (slightly towards the 
right) of a sensor mote is the thermistor, whose thermal IR pixel value we need to 
determine.  
 

 

 
Figure 17 Temporally averaged raw thermal IR image. 
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Figure 18 Pseudo-colored calibrated thermal IR image. The color bar on the right side 
shows the value of each pixel in degrees Celsius in contrary to a raw (uncalibrated) image 
where values would correspond to the output of an Analog to Digital (A/D) converter, 
e.g., [0, 256]. 
 

7.2. Calibration of MICA Sensor Readings using Thermal IR Camera 
Second, we explored the calibration of MICA sensor readings using pre-calibrated 
thermal IR images. This problem turns out to have a great application for large scale 
sensor deployment scenarios. Calibrating a large number of MICA sensors is a very 
tedious and time-consuming process since every sensor has to be treated separately. One 
should be aware that although MICA sensors come with a manufacturer’s recommended 
calibration formula, each sensor has its own hardware characteristics. Thus, inaccurate 
values in engineering units would be obtained if only the calibration formula was applied. 
This is illustrated in Figure 19 by showing a spatially dense spatial arrangement of 
MICA sensors and the inter-sensor variations of raw temperature readings. In order to 
avoid false hazard alarms, it is critical to obtain accurate temperature readings in 
engineering units and hence provides a motivation for our calibration approach. 
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Figure 19: Left – MICA sensor spatial arrangement. Right – Variations of raw 
temperature readings obtained from the MICA sensors shown in the left picture. 
 
A similar calibration hardware setup to Figure 19 was used for our experiments. The 
calibration procedure can be described as follows assuming that all sensors and cameras 
were synchronized and their locations are known. First, we calibrate a thermal IR camera 
according to a procedure described in the next paragraph. Second, both thermal IR 
camera and MICA sensors are initiated to acquire data by broadcasting a RESET signal 
to MICA sensors and triggering thermal IR camera acquisition. Third, MICA sensors 
transmit every set (packet) of temperature measurements with the state of the internal 
counter (time stamp) to the base station attached to a personal computer (PC). In 
meantime, the thermal IR camera acquires data with the time stamp of the CPU clock 
counting from the RESET signal. Fourth, the MICA raw temperature measurements are 
received and transformed into degrees Celsius. Fifth, MICA temperature sensor locations 
in the thermal IR image are identified. All calibrated thermal IR image pixel values at the 
MICA sensor locations are used to form the spatially dependent calibration 
transformation for MICA sensor readings.  
 
To calibrate thermal IR images as needed for the MICA sensor calibration procedure, we 
acquired thermal infrared images of a blackbody, such as a cup of water, while measuring 
its temperature with a regular thermometer (see Figure 20). The cup of water is heated up 
or cooled down while the thermometer is submerged in water.  We took a thermal 
infrared snapshot of the cup of water each time the temperature has changed. Then, we 
averaged a random set of pixels from the image region that corresponded to water. 
Figure 21 shows the raw thermal infrared values as a function of temperature. The graph 
in Figure 21 proves linear dependency between raw thermal infrared values and 
temperatures in engineering units. The calibration mapping between the raw thermal 
infrared image intensities and the temperature in engineering units is established using a 
linear model with estimated parameters from the experimental data. 
 

  
Figure 20: Thermal IR image of a cup of hot water. Black denotes cold and white is hot. 
Notice the probe of the thermometer in the upper left corner of the cup. The same image 
is displayed on the right in pseudo color, where red is hot and blue is cold. 
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Figure 21: Raw thermal infrared camera value as a function of temperature. 
 
In order to quantify the goodness to the linear calibration model, we performed the least 
squares error evaluations. Table 2 summarizes our error analysis. The coefficient of 
determination r2 is used for comparing estimated and actual y-values (raw camera 
values), and ranges in value from 0 to 1. A value of r2=1 means that there is a perfect 
correlation in the sample (no difference between the estimated y-value and the actual y-
value). At the other extreme, a value of r2=0 means that the linear regression equation is 
not a good model in predicting y-value (raw thermal infrared camera value as a function 
of temperature). Our value of r2=0.99589 demonstrates that the linear calibration model 
is a very good approximation of the calibration dependency. 
 
Additional values in Table 2 can be explained as follows. The F statistic or the F-
observed value is used for determining whether the observed relationship between the 
raw thermal infrared camera values and temperature values occurs by chance. It is 
possible to compute the confidence level for the linear model by using the degrees of 
freedom df value and F statistics, and a statistical lookup table. Based on the values 
dF=62 and F=14802.02 in Table 2, the F-distribution critical (lookup table) value is 
190.5 for Alpha = 0.005, and the degree of freedom of nominator v1=60 and denominator 
v2=2, Since the F-distribution critical value is smaller than the F-observed value (190.5< 
14802.02), the hypothesis that the observed linear relationship occurred by chance can be 
rejected. 
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Table 2: A summary of the calibration errors for the experimental results shown in Figure 
21. 
y=m*x+b 0.0881758 -609.465 Linear calibration model 

se_m and 
se_b 

0.0007248 5.995442 Standard error for constants m 
and b 

r2 0.9958289 Determination coefficient 

Sey 2.522087 Standard error for the y 
estimate 

F 14802.02 F-observed value  

dF 62 Degrees of freedom 

ss_reg  94154.482 Regression sum of squares 

ss_resid 394.3771 Residual sum of squares. 

 

7.3. Calibration Challenges 
Our calibration application is unique in the sense that it deals with continuous data 
collection from MICA sensors and a thermal IR camera at high sampling rates. Most of 
other applications known to us assume much lower sampling rates, for example, sampling 
in environmental and atmospheric science applications. However, there are several 
challenges when it comes to (1) acquiring data continuously from wireless sensor 
networks, (2) dealing with large numbers and high spatial density sensor networks, and 
(3) performing real time calibration of thermal IR images. We will outline these 
challenges in the following sub-sections. 

7.3.1. Acquiring Data From Wireless Sensor Networks 
 
The aforementioned calibration procedures have to take into account wireless information 
loss from MICA sensors to the base station. Thus, we formulated the thermal IR 
calibration problem theoretically as an optimization problem and solved it by minimizing 
wireless information loss and maximizing information content. We investigated 
experimentally the impact of several communication protocols, spatial sensor 
arrangements, MICA’s antenna orientations, presence of other wireless devices and the 
dependencies on the number of active MICA sensors to minimize the wireless 
information loss. Our results were summarized in our past publications [33], [34], [37].  
 
In addition, we investigated the issues related to temporal sampling. One would like to 
understand the tradeoffs between the frequency of sensor sampling and data broadcasting, 
and the associated cost in terms of energy, memory storage, CPU utilization, and 
information loss due to on-board pre-processing and/or wireless transmission. Our 
tradeoff analysis is summarized as follows. 
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We are using broadcast to obtain the information back from the MICA sensors to the PC. 
This could result in two sensors sending their data at the same time resulting in a 
collision. Due to these collisions we will not receive all readings however, a newer 
reading will be following the previous reading. If we only have a few sensors 
transmitting, or we do not transmit too often then the chance of a collision would be 
small. If we increase the temporal sampling rate, or the number of sensors in the network 
then we increase the chance of collisions. If we have many sensors transmitting as fast as 
possible, then we would have many collisions and receive very few readings. Thus, for a 
given number of sensors there must exist an optimum temporal sampling rate and vise 
versa. 
 
Figure 22 shows how the number of samples received per second decreases with an 
increasing number of sensors. If there is only one sensor and we sample every 128ms, 
then we receive almost eight readings per second (1000/128). If we add more sensors 
then the number of readings decreases because of the collisions in the network. With 
seven sensors transmitting we obtain the same number of samples per second using 
128ms sample rate (and a lot of collisions in the network) or 256ms sample rate. If we 
would increase the number of sensors then we would continue finding these tradeoff 
configurations (number of sensors and sample rate configuration assessed by the number 
of reading lost due to network congestion).  From these experimental studies one can 
make determinations when it is better to switch to a lower sampling rate and still receive 
the same number of samples per second as at the higher sample rate (while saving battery 
power). Although unclear from these experiments, it is hypothetically possible that with 
128ms sample rate and many sensors in the network one would receive fewer samples per 
second than with the same number of sensors and 256ms while wasting battery power. 
Thus, knowing the optimal sampling rate for a given number of active sensors will not 
only decrease the number of collisions in the network but also save sensor energy. The 
MICA sensors are battery operated and have a limited supply of energy. Transmission is 
in most cases the most expensive operation the sensor performs and thus minimizing the 
number of transmissions will increase the lifetime of the sensors. 
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Figure 22: Samples (sensor readings) received per second as a function of the number of 
sensors for the temporal sampling rate equal to 128ms (top) and 256 ms (bottom). 



Technical Report: isda06-002 
June 1, 2006 
 

Bajcsy, Kooper, Scherba and Urban, NCSA, UIUC 

There are applications other than hazard aware spaces where the time delay between 
sensor readings and the PC attached to the base station is not critical. In this case, for 
instance for data mining purposes, we could collect multiple sensor readings and transmit 
multiple readings in a single broadcast. This would reduce the number of transmission 
resulting in less collisions in the network, higher number of samples per second (but with 
loss of timeliness) and less transmission time (since the network overhead is amortized 
over multiple readings) resulting in less battery usage. We did not investigate this type of 
application scenario.  
 
Finally, one could consider MICA sensing and on-board data processing to broadcast 
only data summaries or data triggered events. While this seems as a very efficient 
approach, the appropriateness depends solely on an application scenario. For instance, it 
might be appropriate for temperature triggered hazard event detection but it will prohibit 
us from doing any analysis of temperature values preceding the hazard event to remove 
false alarms. For calibration purposes, one would need all readings to correlate them with 
thermal IR values and hence we did not investigate this type of wireless data acquisition, 
pre-processing and transmission schema. 

7.3.2. Large Number And High Spatial Density Wireless Sensor Networks 
 
We have investigated the scalability issues of a system that would have large numbers of 
MICA sensors forming a high spatial density sensor network. For this purpose, we 
borrowed 46 MICA2 sensors from the CS Department at UIUC since our current number 
of MICA sensors is only 20 (10 MICA1 and 10 MICA2). These MICA2 sensors come 
with a temperature sensor, as well as a powerful sounder (see Figure 23). Our 
experimental setup is shown in Figure 24. 
 

 
Figure 23: MICA2 sensor with a powerful sounder that was borrowed from the CS 
Department, UIUC. 
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Figure 24: Experimental calibration setup with MICA2 sensors on the floor, thermal IR 
camera located close to the ceiling and pointing straight down, and visible spectrum 
camera located close to the door and providing these setup pictures. A robot with a hair 
dryer was used to simulate temperature changes (see the left picture).  
 
These experiments revealed several challenges regarding wireless traffic (related to 
information loss), incompatibility of MICA2 sensors in terms of their broadcast 
frequency, time stamping issues embedded in TinyDB software and the reliability of 
MICA sensor readings. Figure 25 demonstrates a few of the problems. One would have 
to invest more time to provide solid conclusions about the scalability of the wireless 
sensor sensing mechanism using MICA hardware. 
 

  
Figure 25: Visualization of calibration challenges including (a) irregularity of packets 
received from MICA sensors and (b) spatially varying MICA temperature readings. 
Temporal irregularity of packets received is shown as green bars at the bottom of each 
image. Spatial irregularity is visible in the right image by showing missing readings from 
most MICA sensors (missing blue or red values). Images correspond to snapshots taken 
by the thermal IR camera with dark being cold and white being hot. Calibrated 
temperature readings of the thermal IR camera are displayed as green numbers in the 
image. We computed the difference between calibrated MICA temperature readings 



Technical Report: isda06-002 
June 1, 2006 
 

Bajcsy, Kooper, Scherba and Urban, NCSA, UIUC 

according to manufacturer’s formula and the calibrated thermal IR pixel values. The 
differences are displayed as either blue (MICA reading is colder than thermal IR camera 
reading) or red (MICA reading is warmer than thermal IR camera reading). The MICA 
temperature reading is shown at MICA location as a small square (5x5 pixels) using the 
temperature color scheme of the thermal IR camera. The left picture is taken with 
homogeneous ambient temperature. The right picture is acquired with heterogeneous 
ambient temperature introduced by a hair dryer (see the white blob in the left lower 
corner). 
 

7.3.3. Performing Real Time Calibration Of Thermal IR Images 
 
We spent extra time on thermal IR image acquisition since the image data acquisition 
could operate in 8-bit or 12-bit mode. Unfortunately, the camera vendor FLIR Systems 
(the vendor was originally Indigo Inc. but it was sold in January 2004) did not provide a 
developer’s kit with a low level application programming interface (API) for 12-bit 
image acquisition without an additional fee. Due to our financial constraints, we decided 
to implement a 12-bit data acquisition mechanism using the RS 232 (serial port) 
interface. The drawback of the current 12-bit data acquisition mechanism using RS 232 is 
its slower sampling rate (30 seconds per frame for 128x162 pixels) than it could be using 
the FireWire (IEEE1394) interface (25 frames per second). The issues of (1) 8-bit versus 
12-bit data, (2) data transfer and conversions from camera to a personal computer, and (3) 
real-time acquisition, are outlined next. 
 
The issue of 8-bit versus 12-bit thermal IR data acquisition: The Indigo Omega 
camera used in our experiments uses internally a 12 bit representation of temperature 
values. To obtain data from the camera to the PC, a special hardware module can be used 
to translate the signal to a serial port signal, an analog video or a fire wire (IEEE 1394) 
video. When the camera data are transmitted over the serial port, the 12 bit representation 
is transmitted as a 16bit signal (equal to 2 bytes). The same is true for a fire wire video. 
When transmitting the data across the analog video the 12 bit signal is first converted to 
an 8 bit representation which is then converted to an analog signal. 
 
To perform the 12 bit to 8 bit conversion, a technique called smart scene is used. This 
technique will find the coldest and hottest temperature in the image and scale all values in 
the image with respect to these values. For instance, if we have an image with a range 
from 100 to 500 then the value 100 is mapped to 0, and the value 500 is mapped to 255 
and all other values are mapped correspondingly. Now, if we have a scene that has values 
ranging from 1000 to 2000 these will also be mapped into the values 0 to 255. If we do 
not know what mapping is used we cannot distinguish between the value 100 from image 
1 and 100 from image 2. It is also apparent from these examples that we loose precision, 
in the case of image 2 we are mapping the values 1000 to 2000 in a range from 0 to 255, 
resulting in almost 4 distinct values being mapped to the same value. 
 
Data transfer and conversions from camera to personal computer: Figure 26 shows 
the process when using a video capture board on the PC to get the data from the IR 
camera. The 12 bit data from the camera are first converted to 8 bits (see previous 
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paragraphs), and then are converted to an analog video signal. This video signal is 
transmitted and converted back to a digital signal. This conversion happens in hardware 
resulting in 30 frames per second. However, the video capture board does not know the 
bits represent originally a grayscale data set and it will treat the data as a color image. 
Losses due to (a) converting the signal to analog, (b) during transmission and (c) during 
the final analog-to-digital conversion, the image values received as red, green and blue 
are not identical. This consideration combined with the facts that we loose (a) precision 
during the 12 bit to 8 bit conversion, and (b) knowledge about what value 0 maps to, we 
decided to use the 12 bit data transfer. 
 
 

 
Figure 26: Data transfer and conversions for 8-bit acquisition mode of the thermal IR 
Omega camera. 
 
Figure 27 shows the process when using either fire wire or serial port. In both cases the 
data is transmitted from the camera to the interface circuit board and transmitted either 
across the serial port or fire wire. Both of these data transfers can handle the 12 bit data, 
by pretending the data is actually 16 bit. However, we can only receive 1 frame every 20 
seconds using the serial port due to its low bandwidth, while with the fire wire port we 
can receive 30 frames per second. Unfortunately, unlike many other manufacturers, 
Indigo does not provide a free toolkit to read the data from the fire wire port and we did 
not have any expertise and resources to develop data reading from fire wire. Thus, we 
decided to implement the 12 bit data transfer using the serial port. In the future, given a 
software support for FireWire IEEE 1394 enabling 12-bit data acquisition, one would 
achieve higher image sampling rate than with the current serial RS232 connection 
(viewed as a temporary alternative solution for acquiring 12-bit data). 
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Figure 27: Data transfer for 12-bit acquisition mode of the thermal IR Omega camera. 
 
Real-time data acquisition: In the 8-bit mode, the data acquisition speed is defined by a 
video capture card in a personal computer that performs Analog NTSC to RGB 
conversion (25 frames per second). In the 12-bit mode, the data acquisition speed is 
defined by a serial RS232 connection (1 frame per 20 seconds). The implementation 
tradeoff can be described as a real time but “inaccurate” 8-bit acquisition versus a non-
real time but accurate 12-bit acquisition. Based on our calibration objective to obtain the 
most accurate measurements, we decided to use the more accurate data acquisition over 
the real-time data acquisition solution. 
 

8. Proactive Camera Control, Hazard Detection and Human Alert 
We have investigated proactive approaches to camera control, spectral image analysis 
and human alert mechanisms. We have completed a design phase of a proactive camera 
control system that can trigger visible spectrum and thermal infrared spectrum cameras 
based on luminance and temperature sensors mounted on the available MICA sensor 
boards. Our current design addresses the problems of (a) efficient bandwidth 
management by proactive camera control (low bandwidth monitoring of hazard 
awareness spaces with MICA sensors and high bandwidth monitoring of hazard 
awareness spaces with cameras), (b) hazard understanding (multi-spectral sensing 
including visible and thermal infrared information) (c) choice of the best spectral 
modality to capture data about the environment based on the data provided by the MICA 
sensors and (d) human alert mechanism (image analysis to highlight areas of potential 
hazard). The proactive camera logic can be described as follows. 
 
If light = on then visible camera = on 
If light = off then thermal IR camera = on 
If temp > thresh & light = on then visible camera = on & hazard region enhancement 
If temp > thresh & light = off then thermal IR camera = on & hazard region enhancement 
 
Examples of proactive camera control and human hazard alert mechanism are shown in 
Figure 28 and Figure 29.  
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Figure 28: Proactive camera control. Depending on the temperature and light readings 
from a wireless network of motes, either a visible spectrum video or a thermal infrared 
spectrum video is sent to a hazard monitoring station.  
 

 
Figure 29: Illustration of hazard alert by automated region selection and image 
enhancement. Note how the system uses the RGB camera when the office light is on, and 
combines the information about white (hot) regions from the thermal IR camera to 
highlight the RGB region of interest (the hazard region). 
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9. Hazard Confirmation and Containment 
We have also investigated the possibilities of using the robot and its robotic arm for 
hazard confirmation and containment. Hazard confirmation is needed when MICA 
sensors report inconsistent values or when hazard measurements are too sparse and it is 
desirable to increase spatial density of sensor readings. Deployment of additional MICA 
sensors to confirm hazards is executed the same way as the deployment of new MICA 
sensors by using remotely controlled robot with multiple human-computer interfaces.  
 
Hazard containment requires studying hazard types, containment methods, hazard 
accessibility and many other application specific constraints. We have prototyped a 
demonstration showing that a robot could be used for the purpose of hazard containment 
when fire hazards in an office building are still relatively small in their extent. It is our 
belief that constant monitoring of hazards and an immediate hazard containment action 
could prevent large scale fire hazards and significant financial damages. In our 
demonstration, a robot is remotely navigated to reach its destination (desired proximity 
and orientation with respect to a lit candle) and then it contains the fire hazard by 
pressing the hair dryer “on” button with the robotic arm to extinguish the flame. A time 
frame of the demonstration is shown in Figure 31. 
 

 
Figure 30: A time frame from an experiment that shows how a robot can be remotely 
navigated to reach its destination (desired proximity and orientation with respect to the lit 
candle). It can then contain the fire hazard by pressing the hair dryer “on” button with the 
robotic arm and extinguish the flame. 
 

10. Hazard Understanding 
To better understand hazards we try to use as many different sensors as possible. One 
problem is how can we use different cameras to few the same scene and do a simple 
comparison between the images captured using each camera. First we need to make sure 



Technical Report: isda06-002 
June 1, 2006 
 

Bajcsy, Kooper, Scherba and Urban, NCSA, UIUC 

all images captured are the same color, this is address in 10.1 and then we need to 
compare the images, a generic framework for this is discussed in Section 10.2. Once we 
have this we can look at how to use multi band camera’s to distinguish different hazards, 
this is described in Section 10.3 
 

10.1. Calibrating Color Cameras using a Hyperspectral Camera 
 
Our objective is to perform hazard analysis from multi-sensor and multi-instrument 
inputs. In this environment, we would like to utilize high-spectral resolution imagery for 
improving low-spectral resolution imagery. In our analysis, we assumed that an 
acquisition of high spectral resolution images provides more accurate spectral predictions 
of low spectral resolution images than a direct acquisition of low spectral resolution 
images. We illustrated the advantages by focusing on a specific case of images acquired 
by a hyperspectral (HS) camera and a color (red, green, and blue or RGB) camera. First, 
we identified two directions for utilization of HS images, such as (a) evaluation and 
calibration of RGB colors acquired from commercial color cameras, and (b) color quality 
improvement by achieving sub-spectral resolution.  Second, we elaborated on challenges 
of RGB color calibration using HS information due to non-ideal illumination sources and 
non-ideal hyperspectral camera characteristics.  
 
The core of our work lied in developing camera calibration approaches that compensate 
for wavelength and spatial dependencies of real acquisition systems. We evaluated two 
color cameras by establishing ground truth RGB values from hyperspectral imagery and 
by defining pixel-based, correlation-based and histogram-based error metrics. Our 
experiments were conducted with three illumination sources (fluorescent light, Oriel 
Xenon lamp and incandescent light); with one HS OptoKnowledge camera and two color 
(RGB) cameras, such as Sony and Cannon. We showed a data-driven color-calibration as 
a method for improving image color quality.  
 
Given the assumption that an acquisition of high spectral resolution images provides 
more accurate spectral predictions of low spectral resolution images than a direct 
acquisition of low spectral resolution images, the two approaches to utilization of 
hyperspectral imagery are illustrated in Figure 31. One can utilize high spectral resolution 
imagery either for evaluating and calibrating colors of low spectral resolution cameras, or 
for increasing spectral resolution of low resolution cameras using additional information 
about scenes. In hazard awareness spaces, we expect to have many color (RGB) cameras 
since they are inexpensive and operating real-time. Hyperspectral cameras, that are quite 
expensive and known to have slow image acquisition, would be utilized for improving 
spectral values (RGB) and spectral resolution (number of bands) of images acquired with 
color cameras.  
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Figure 31: Two approaches how to utilize high spectral resolution imagery for improving 
color (RGB) imagery. 
 

10.2. Framework for Image Comparison 
To compare images taken with different cameras as well as images taken at different 
times we have developed image comparison techniques. This component is important for 
hazard understanding and detection since our goal is to search for hazards with minimum 
human intervention. In addition, humans might not be able to discriminate hazards with 
the same accuracy as computer algorithms with built-in prior hazard models. From this 
perspective, modeling hazards and evaluating hazard prediction accuracy are key 
technologies for operational hazard awareness spaces. These techniques led us to develop 
a more generic methodology for evaluating image comparison techniques, especially for 
evaluating statistically predicted versus measured multi-modal imagery. 
Since statistical prediction models are frequently chosen as more appropriate modeling 
approaches, there is a need to evaluate the accuracy of statistically predicted versus 
measured imagery. This problem poses challenges in terms of selecting quantitative and 
qualitative evaluation techniques, and establishing a methodology for systematic 
comparisons of synthetic and measured images. We therefore developed a methodology 
and showed experimental results for color (red, green and blue) and HS imaging 
modalities. The methodology includes several evaluation techniques for comparing image 
samples and their similarity, image histograms, statistical central moments, and estimated 
probability distribution functions (PDFs). Particularly, we assessed correlation, 
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histogram, chi-squared, pixel and PDF parameter based error metrics quantitatively, and 
related them to a human visual perception of predicted image quality. The evaluation 
schema is illustrated in Figure 32.  
.  
  

 
Figure 32: An overview of evaluation comparisons. 
 

10.3. Future Work on Hazard Understanding 
It is important to not only detect a hazard, but also understand it. For example in Figure 
33 there is a picture of a couch burning in the left picture, which is bad, and a fire in the 
fire place on the right which is good. To understand what is burning we are looking at the 
possibility of using the hyperspectral camera to take images of a hazard. Analysis of the 
hazard at the different wavelengths will hopefully give us an idea of what is burning. 
 

  
Figure 33: Examples of “bad” (left) and “good” (right) fire hazards.  
 
Not only will the information of what is burning help us detecting if something is a 
hazard, we can use this information also to assist any fire fighters. If we can tell the fire 
fighter what is burning, for instance oil vs. wood they can use specific techniques and 
equipment to contain and extinguish the fire. 
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11. Summary 
Our objective was to research any technical challenges in building a prototype HAS 
system for detecting fire, vision impairing light, extreme sonic waves, or any other 
hazards that can be sensed by spectral sensors. Our initial focus was on testing and 
deploying sensors, and combining wireless “smart” micro electro-mechanical systems 
(MEMS) sensors and spectral cameras for camera calibration, hazard detection and 
hazard identification purposes. 
 
We explored the issues related to a large sensor network where the bandwidth available 
was limited and unlimited broadcasting would be a waste of resources. We have 
performed several experiments to demonstrate that sometimes acquiring fewer readings 
leads to higher system efficiency since too many readings might cause collisions in the 
network resulting in fewer reading reaching the base station. Another constraint of the 
sensor networks is the energy usage. Again, sending fewer readings will reduce the 
energy consumption of a sensor. 
 
The readings coming from the sensor can be delayed in the network, or during processing 
on the host computer. To be able to correlate the readings from the MICA sensors with 
the readings from other sensors, like a camera, we have implemented a simple time 
synchronization protocol that will enable us to timestamp each reading at the sensor. 
 
In multi-sensor and multi-instrument systems, the data we receive at a central computer 
come from multiple sources (e.g. MICA sensors and cameras). Thus, we have 
investigated methods how to fuse the incoming data and maximize our information gain 
from the use of diverse sensing capabilities. We have researched specifically a fusion of 
(a) temperature readings from the MICA sensors with the thermal IR camera and (b) 
depth information from the MICA sensor localization with the stereo camera depth map. 
 
Finally we have developed a method for deploying sensors remotely with a robot. To 
allow us to remotely control the robot we have looked at different modalities of 
controlling the robot (e.g. voice, gestures, a mouse or a keyboard). We have addressed 
the problems related to issuing conflicting commands to control the robot by using simple 
heuristic rules derived from the importance of commands (e.g. stop is more important 
than move ahead). 
 
Our work provides a prototype system with several solutions to outlined problems and a 
future test bed for developing a functional hazard aware space. 
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