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Abstract

In this dissertation, I present a problem of three-dimensional volume reconstruction from flu-

orescent confocal laser scanning microscopy (CLSM) imagery. I overview a three-dimensional

volume reconstruction framework which consists of (a) volume reconstruction procedures us-

ing multiple automation levels, feature types, and feature dimensionalities, (b) a data-driven

registration decision support system, (c) an evaluation study of registration accuracy, and

(d) a novel intensity enhancement technique for 3D CLSM volumes.

The motivation for developing the framework came from the lack of 3D volume recon-

struction techniques for CLSM image modality. The 3D volume reconstruction problem is

challenging due to significant variations of intensity and shape of cross sectioned structures,

unpredictable and inhomogeneous geometrical warping during medical specimen prepara-

tion, and an absence of external fiduciary markers. The framework addresses the problem

of automation in the presence of the above challenges as they are frequently encountered

during CLSM-based 3D volume reconstructions used for cell biology investigations.

The objectives of the presented three-dimensional volume reconstruction framework are

summarized as follows: (1) automate alignment of sub-volumes (physical sections) from mul-

tiple cross sections, (2) obtain high resolution image frames by mosaicking (i.e., stitching

together), (3) quantify the accuracy of volume reconstruction using multiple techniques, and

(4) visualize the reconstructed volumes in three-dimensional environments for visual inspec-

tion and quantitative interpretation.

In this dissertation, the three-dimensional sub-volume registration problem is viewed pri-

marily as an alignment problem. It is approached by extracting two- or three-dimensional
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features from each sub-volume and registering the sub-volumes based on the analysis of

detected features. I present three sets of techniques classified as pre-processing, main-

processing, and post-processing techniques for 3D volume reconstruction. First, the pre-

processing steps include (a) sub-volume intensity analysis for image frame selection and

feature detection, (b) tile mosaicking using different automation levels and user expertise

followed by accuracy evaluation, (c) 2D region or 3D volume segmentation using disk/sphere-

based region/volume growing technique, and (d) feature detection based on 2D or 3D seg-

mentation for accurate feature matching and registration alignment optimization. Second,

the main-processing steps aim at achieving the most accurate sub-volume alignment, and

include (a) feature matching (feature correspondence) using different levels of automation

and collaborative mechanisms with web services followed by accuracy evaluations, (b) reg-

istration refinement based on different registration accuracy evaluation criteria, (c) optimal

global transformation estimation, and (d) sub-volume transformation to construct a 3D vol-

ume for visualization. Finally, the volume post-processing step enhances visual saliency of

the reconstructed 3D volume by minimizing distortions of the local image intensities (e.g.,

gradients of edges), and provides comparative results for enhancement with the existing

methods using several image quality assessment metrics.

The primary contribution of this dissertation is the presentation of a new theoretical

model for three-dimensional volume reconstruction that includes reconstruction methodol-

ogy, a data-driven registration decision support, automation, intensity enhancement for pro-

cessing volumetric image data from fluorescent confocal laser scanning microscopes (CLSM).

Researched methods have been fully implemented in the Image to Knowledge (I2K) software

package developed at the National Center for Supercomputing Applications (NCSA).

The broader impact of my work is in providing the algorithms in a form of web-enabled

tools to the medical community so that medical researchers can minimize laborious and time

intensive 3D volume reconstructions using the tools and computational resources at NCSA.
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Chapter 1

INTRODUCTION

1.1 Problem Statements

Manual three-dimensional volume reconstruction from stacks of confocal laser scanning mi-

croscopy (CLSM) images obtained from the study of serial histological cross sections is

considered as an extremely time consuming process. Reconstruction is characterized by

(a) significant variations in intensity and in shape of corresponding structures in multiple

cross-sections, (b) unpredictable and frequently inhomogeneous geometrical warping during

specimen preparation, and (c) lack of internal fiduciary markers for alignment. Given this

characteristics, one could approach the problem by selecting the most cost-effective methods

with achieving maximum reconstruction quality, e.g., alignment accuracy. For example, with

automation, it may be possible to save time and to achieve consistency in three-dimensional

reconstructions which would not be possible with manual reconstruction methods.

In this dissertation, I present a novel framework for performing three-dimensional vol-

ume reconstruction from fluorescent confocal laser scanning microscopy (CLSM) imagery.

The presented framework consists of (1) automation procedures using 2D or 3D information

from input cross sections, (2) performance evaluation methodology and experimental result

from expert study, and (3) a data-driven registration decision support system for optimal

registration performance.

The automation procedure addresses the problem occurred in pre-processing, main-

processing, and post-processing. First, the goals of the pre-processing step are the high

resolution image construction (denoted as mosaicking) and registration feature detection by
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segmentation (2D and 3D). Second, the main-process finds the most optimal transforma-

tion by matching detected features in multiple automation levels, refining the coordinates of

matching features using intensity or structural morphology, and estimating a global trans-

formation. Finally, in post-processing, individual image frames are processed for visual

enhancement by removing spatial intensity heterogeneity and preserving fine edge intensity

gradient. To assess the registration accuracy, I provide a performance evaluation method-

ology and evaluation results in different levels of automation and medical expertise. The

registration decision support system provides input data analyses on image sub-area size,

transformation model selection, registration feature selection, and automation levels that

affect registration performance in terms of alignment accuracy, uncertainty of alignment re-

sults, repeatability of alignment, and computation requirements. The framework provides

medical researchers with guidelines about an optimal volume reconstruction procedure, and

addresses related computer science problems. Next, I describe the main claims of the dis-

sertation as follows.

• Three-dimensional volume reconstruction framework: A new framework for

three-dimensional volume reconstruction from CLSM imagery has been introduced

that incorporates automation procedures, performance evaluation, and registration

decision support system (Chapter 2).

• Automation procedure: An automation procedure has been developed by incor-

porating (a) different automation levels (e.g., manual, semi-automated, and fully-

automated), (b) measurement space (e.g., intensity or morphology), and (c) feature

dimensionality (e.g., centroid point or trajectory). It incorporates data-driven registra-

tion decisions to achieve the most accurate and cost-efficient three-dimensional volume

reconstruction. (Chapter 3 and Chapter 4)

• Registration decision support system: A data-driven registration decision sup-

port system has been designed. The registration decision support system includes
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multiple variables which make impact on registration accuracy, such as image size selec-

tion, rigid or affine transformation model, intensity or morphological invariant feature

selection, and manual (pixel-based) or semi-automated (centroid-based) automation

level. Specifically, it provides multiple paths for performing 3D volume reconstruction

based on tradeoff analyses of available computational resources and data characteristics

(Section 2.4).

• Accuracy Evaluation: Registration accuracy has been evaluated by studying users

in multiple domains (e.g., medical doctors, computer experts, and novices). I provide

precise evaluation metrics that show objective accuracy evaluation for our simulation

and real experimental results (Section 3.7 and Section 4.6).

• Sub-volume pre-processing techniques: Sub-volume pre-processing steps have

been developed, and they include automated frame selection, tile mosaicking using

multiple automation levels, 2D and 3D segmentation, and feature detection (Chapter

3).

• Automated feature matching technique: A new robust fully-automated two-

dimensional feature matching method is presented. The method automatically es-

tablishes feature correspondence using area and qualitative configurations of feature

centroids by solving an extension of the Procrustes problem [24] (Section 4.3.3).

• Web-based collaborative tools: A web-based sub-volume alignment method is

provided. The proposed web service based solution provides a collaborative mechanism

for 3D volume reconstruction (Section 4.3.4).

• Fully automated registration technique: Novel automated sub-volume registra-

tion methods are presented. Based upon the optimality criteria, two-dimensional (e.g.,

centroid) and three-dimensional (e.g., trajectory of centroids) features have been used
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for automated sub-volume registration. I also discuss some factors that affect registra-

tion accuracy in experimental results (Section 4.4).

• Intensity correction technique: A novel intensity correction method has been

developed. The proposed method solves the spatial intensity heterogeneity problem

which is known as a major barrier against accurate analysis of fluorescent CLSM data. I

presented simulation and real data experiments using objective performance evaluation

metrics. Although the technique is used for visual enhancement as a post-processing,

it can be further used in image pre-processing step for more robust intensity-based

mosaicking and segmentation (Chapter 5).

The developed framework was applied to the problem of 3D volume reconstruction of

blood vessels and vasculogenic mimicry patterns in uveal melanoma from serial fluorescent

labeled paraffin sections labeled with antibodies to CD34 and laminin and studied by confocal

laser scanning microscopy. The medical significance of the 3D volume reconstruction work

lies in discovering looping patterns stained in histological cross sections. It is the 3D visual

interpretation and quantitative evaluation that would lead to successful uveal melanoma

detection.

1.2 Motivation

The problem of 3D volume reconstruction can be found in multiple application domains,

such as, medicine, mineralogy, or surface material science. In almost all applications, the

overarching goal is to automate a 3D volume reconstruction process while achieving at least

the accuracy of a human operator. The benefits of automation include not only the cost

of human operators but also the improved consistency of reconstruction and the eliminated

training time of operators.

In medical domain, manual 3D volume reconstruction from stacks of laser scanning confo-

cal microscopy images obtained from the study of serial histological sections is time consum-
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ing process. Reconstruction is complicated by potentially significant variations in intensity

and shape of corresponding structures, unpredictable and frequently inhomogeneous geo-

metrical warping during specimen preparation, and an absence of internal fiduciary markers

for alignment.

Given this assumption, 3D volume reconstruction can be performed by either a semi-

automated method with improved accuracy in comparison to manual method [85] or by a

fully automated 3D volume reconstruction while achieving at least the accuracy of a human

operator. Through automation, it may be possible to save time and to achieve consistency in

3D reconstructions which may not be possible with human-assisted reconstruction methods.

In this dissertation, I study a 3D volume reconstruction framework from stack of con-

focal laser scanning microscopy images with quantitative performance evaluation of fully

automatic, semi-automatic and manual methods [85]. In results, I present experiments with

fluorescent confocal laser scanning microscope imagery used for mapping the distribution of

extracellular matrix proteins in serial histological sections of uveal melanoma [23, 111].

1.3 Applications

Quantitative analysis of tissue components from archival paraffin blocks: The

automated three-dimensional volume reconstruction technique is applied to the problem of

comparing the surface area of non-endothelial cell lined, laminin-rich looping vasculogenic

mimicry (VM) patterns with the surface area of endothelial cell lined vessels in metastatic

uveal melanoma to the liver. VM patterns are known to transmit fluid in vivo and contribute

to the perfusion of many tumor types. After labeling sections with antibodies to CD34

and laminin, the surface area of VM patterns to vessels was calculated by segmenting out

structures that labeled with laminin but not with CD34 from those structures labeling with

CD34 or CD34 and laminin. In metastatic uveal melanoma tissues featuring co-localization of

5



high microvascular density [66.4 microvessels adjusted for 0.313 mm2 area (range 56.7-72.7)]

and vasculogenic mimicry patterning, the surface area of vasculogenic mimicry patterns was

11.6 fold greater (range 10.8-14.1) than the surface provided by CD34-positive vessels. The

techniques used in this study revealed tissue characteristics that could not be identified from

2D sections alone. These techniques may be extended to the visualization and quantification

of molecular markers in a variety of pathological entities from archival paraffin embedded

tissues.

Remote collaboration: The developed 3D volume reconstruction tools are web-enabled,

and applied to the problem of remote collaboration. The use of web services is motivated by

the fact that the problem of 3D medical volume reconstruction requires significant computer

resources and human expertise in medical and computer science areas. In the collaboration

between UIC and NCSA, pre-processed input images at NCSA are made accessible to med-

ical collaborators at UIC for registration. Every time UIC medical collaborators inspected

images and selected corresponding features for registration, the web service at NCSA is con-

tacted and the registration processing query is executed using the Image to Learn library

of registration methods. The co-registered frames are returned for verification by medical

collaborators in a new window.

Software services for registration decision: The goal is to provide data-driven mech-

anisms for evaluating the tradeoffs between accuracy of 3D volume reconstructions and

registration variables. The support developed for registration decisions about 3D volume

reconstruction is available to the general community with the access to the NCSA HPC

resources.
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1.4 Input Data Description

In this section, I present the process of input data preparation for 3D volume reconstruction

and the assumptions of the acquired data sets.

1.4.1 Data preparation

It is apparent that using artificially inserted fiduciary markers allows automating 3D vol-

ume reconstruction while keeping low registration error. However, there still exist medical

experiments with CLSM, where fiduciary markers cannot be inserted into a specimen. For

example, the placement of fiduciary markers in a paraffin-embedded tissue is problematic.

The introduction of markers internally may distort the tissue and areas of interest. On the

other hand, markers placed outside the tissue may migrate during sectioning or expanding

the paraffin. The composition of the markers also poses challenges. Rigid material, such as

suture, may fragment or distort the tissue when sections are cut. In addition to attempt-

ing to locate fiduciary markers into tissues using the aforementioned techniques, it is also

attempted to insert small cylindrical segments of ”donor tissue” from paraffin-embedded tis-

sues according to the techniques used to construct tissue microarrays [106]. It is discovered

that the round outlines of the donor tissue cores were inconsistent between tissue sections,

making it impossible to use these donor samples as reliable internal fiduciary markers.

Although the 3D volume reconstruction problem without artificially inserted fiduciary

markers into paraffin-embedded tissue is addressed, medical experts still need to identify

an internal specimen structure for registration that would be visually salient. For this pur-

pose, tonsil tissue was used because it contained structures of interest, e.g., blood vessels.

The tonsillar crypts provided a complex edge against which alignment was possible, and the

epithelial basement membrane followed its contour. The blood vessels were stained with

an antibody to laminin that also stained the epithelial basement membrane. Therefore, by

using the epithelial basement membrane - a normal constituent of the tissue - as the visually
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Figure 1.1: An overview of 3D sub-volumes from fluorescent laser scanning confocal micro-
scope images.

salient registration feature in the input CLSM image, medical experts were able to align

the tissue sections. Thus, CLSM images of tonsil tissue sections were used for 3D volume

reconstruction accuracy evaluations.

In order to demonstrate the issues related to selecting registration variables, we con-

sider 3D volume reconstruction of blood vessels in histological sections of uveal melanoma

[21] from paraffin-embedded serial sections labeled with antibodies to CD34 and laminin

and studied by confocal laser scanning microscopy (CLSM) imagery [15, 70]. Input data is

prepared in following steps as illustrated in Figure 1.1.

1. Formalin-fixed, paraffin-embedded uveal melanoma tissue samples were sectioned at

4µm thickness. These sections are denoted as physical sections or histologic serial

sections. Note that the slide can be slightly distorted by shear due to slicing procedure.

2. Slides were deparaffinized in xylene and dehydrated through a decreasing ethanol gra-

dient. Slides were rinsed in distilled water followed by antigen unmasking using Tar-

get Retrieval Solution 10× Concentrated (DAKO, Carpenteria, CA) according to the

manufacturer’s instructions and then rinsed in Phosphate Buffered Saline (PBS) for 5

minutes. Slides were incubated with monoclonal mouse anti-laminin antibody Sigma

L8271, clone LAM 89 (Sigma, St. Louis, MO) at a dilution titer of 1:200 for 30 minutes
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at room temperature. Slides were rinsed in protein blocking solution (DAKO) for ten

minutes followed by detection with Alexa Fluor 488 goat anti-mouse IgG (Molecular

Probes, Eugene, OR) for 30 minutes at a dilution of 1:400. Slides were rinsed in buffer

then mounted in Faramount Aqueous Mounting Medium (DAKO). For all staining

procedures, secondary antibody was omitted in negative controls.

3. All histologic serial sections were examined with a Leica SP2 laser scanning confocal

microscope (Leica, Heidelberg, Germany) using the 40× objective. Images were stored

in tagged information file format (TIFF). Each physical section is imaged by changing

optical focal length and spatial field of view as following:

(a) In a spatial region (lateral section), acquire a set of depth adjacent images (also

denoted as frames or optical sections) by only changing focal length (axial section)

of the CLSM.

(b) Mechanically move the specimen stage to change the field of view (e.g., image

different physical regions) by increasing/decreasing x and/or y offset of the slide,

i.e., translational transformation (two parameters tx and ty). An image from one

field of view is denoted as a tile and a series of tiles are denoted as stack. Note

that stacks in lateral plane must have overlapping regions with adjacent stacks

from different field of view (experimentally, at least 15% of the tile width should

be overlapped). For example, in Figure 1.1, each physical section is image into

nine spatially adjacent stacks with some overlapping regions.

(c) Perform (a)-(b) to cover entire spatial (x-y) area of the slide.

(d) Replace the slide to image next depth adjacent physical section. Note that the

slide can be rotated and/or translated in this procedure.

4. Label each image with a slide number (i.e., physical section number, e.g., S2), a frame

number (i.e., optical section number or frame depth, e.g., z002), a spatial field of
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view (i.e., spatial tile location index, e.g., X1Y2), and imaged fluorescent channel (i.e.,

wavelength, e.g., ch01). For example, a filename can be labeled as 022704-S4X2Y1-

z003-ch00.tif with the acquisition date 02-27-04.

1.4.2 Input data properties

The set of spatial tiles is acquired by CLSM and consists of images that came from one

cross section (same axial coordinate) in different lateral coordinates or from multiple cross

sections of a 3D volume (different axial coordinates). I assume the following properties of

acquired image data.

• All physical sections are assumed to be parallel to the same two-dimensional plane.

• During the slide preparation, a tissue slide could be rotated, translated, and slightly

sheared. Thus, I use affine transformation for alignment of physical cross sections.

• Image tiles in the same lateral field of view and physical cross section are perfectly

aligned in the axial direction.

• The image tiles are acquired by translational motions of the microscope to capture

images in different field of view.

• Identical frame indices have the same physical axial depth if they came from the same

physical cross section but different image tiles.

• The same frame index among different stacks (field of view) is assumed as the same

physical depth of the imaged slide.

• Fluorescent intensity is heterogeneous in both lateral section and axial section. The

intensity heterogeneity model is neither known nor controllable (An example is shown

in Figure 2.12).
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• Structural deformation is negligible in overlapping regions between spatially adjacent

tiles when compared at the same depth (e.g., frame index).

1.5 Dissertation Overview

This chapter focused on the problem statement and input data description used for this

dissertation. Chapter 2 summarizes the overall methodology of three-dimensional volume

reconstruction from CLSM data [10] 1, and outlines a decision support system to optimize

3D volume reconstruction [9] 2.

Chapter 3 provides a sub-volume pre-processing steps such as sub-volume intensity anal-

ysis, tile mosaicking, two-dimensional region or three-dimensional volume segmentation, and

feature detection.

The main-processing step is presented in chapter 4 that pursues the most accurate sub-

volume alignment using detected features in pre-processing step. The process includes (a)

feature matching (e.g., feature correspondence) [86] 3 using different levels of automation

[85, 88] 45 and different geographical experimental setups (e.g., web services) [76] 6 with

precise accuracy evaluation, (b) matching refinement, (c) optimal global transformation

estimation, and (d) sub-volume transformation to construct an entire three-dimensional vol-

ume for visualization.

Finally, in chapter 5, the volume post-processing step provides a novel method to enhance

visual saliency of reconstructed volume by minimizing distortions of the local intensity char-

acteristics of features, e.g., gradients of edges, and comparative results with existing methods

by providing objective image quality analysis metrics [87] 7.

1Related material is published in Journal of Microscopy, 2006
2Related material is published in SPIE international symposium on Medical Imaging, 2006
3Related material is published in SPIE international symposium on Medical Imaging, 2006
4Related material is published in SPIE international symposium on Medical Imaging, 2005
5Related material is published in EURASIP JASP, 2006
6Related material is published in IEEE International Conference on Web Services, 2005
7Related material is published in Journal of Microscopy, 2006
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Chapter 5 summarizes the contribution made in this dissertation.
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Chapter 2

FRAMEWORK FOR
THREE-DIMENSIONAL VOLUME
RECONSTRUCTION

2.1 Introduction

In general, a feature-based 3D volume reconstruction without fiduciary markers requires

performing the following steps. First, define a reference coordinate system for a reference

image. Second, determine locations of salient features in multiple input image sets, which

we call feature detection. Third, establish correspondences of detected feature sets between

adjacent sections (images). This step is also denoted as finding spatial correspondences.

Fourth, estimate a registration transformation that will compensate for geometric distor-

tions. Fifth, transform sets of input images with respect to the reference coordinate system

using estimated transformation in the previous step. Sixth, evaluate registration accuracy

with a selected metric.

In this dissertation, the main objectives of 3D volume reconstruction from CLSM data

are (1) to obtain high resolution image frames by mosaicking (stitch together) spatial tiles

that came from the same depth of a sub-volume, (2) to align sub-volumes (physical sections)

from multiple cross sections, (3) to evaluate the accuracy of 3D volume reconstruction us-

ing multiple techniques, and (4) to visualize the reconstructed volumes in 3D environment

for user-driven or quantitative analysis. Our 3D volume reconstruction work is based on

the assumption that there is no prior information about (a) tile locations and their spatial

overlap, (b) locations and types of cross section features, and (c) evaluation methodology,

ground truth data, and accuracy metrics.

Section 2.4 addresses the problem of optimal registration decisions during 3D medical
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volume reconstruction and their impact on anticipated accuracy of aligned images, uncer-

tainty of obtained results, repeatability of alignment, and computational requirements. The

registration decisions include (1) image size used for registration, (2) transformation model,

(3) invariant registration feature (intensity or morphology), (4) automation level, (5) evalu-

ations of registration results (multiple metrics and methods for establishing ground truth),

and (6) assessment of resources (geographically local or distributed computational resources

and human expertise). The goal is to provide data-driven mechanisms for evaluating the

tradeoffs between accuracy of 3D volume reconstructions and registration variables. First,

I present links between registration decisions and 3D reconstruction results in terms of ac-

curacy, uncertainty, consistency and computational complexity characteristics. Second, I

have built software tools that enable geographically distributed researchers to optimize their

data-driven registration decisions by using web services and high performance computing

(HPC) resources. The support developed for registration decisions about 3D volume recon-

struction is available to the general community with the access to the NCSA HPC resources.

Next, I illustrate the performance of our registration decision support system by considering

3D volume reconstruction of blood vessels in histological sections of uveal melanoma from

serial fluorescent labeled paraffin sections. Finally, I discuss the complexity of building a

web-enabled, web services based, data-driven, registration decision support system for 3D

volume reconstruction.

2.2 Related Work

In this dissertation, 3D volume reconstruction of CLSM data is considered as a registration

problem of spatial- and depth-adjacent image stacks. Generally, medical image registration

refers to one-to-one mapping between two coordinate spaces, such that pairs of coordinates

correspond to the same anatomical structure [103]. This correspondence can be measured
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by hardware, e.g., stereotactic frame [79], or estimated by software analysis of measured

images. Without hardware support, medical image registration is typically performed using

either extrinsic or intrinsic methods [97].

Extrinsic methods introduce foreign objects into a test specimen, so that the object can

be detected easily and relatively accurately after specimen imaging [43, 89, 103, 91, 32, 99,

100, 147]. The foreign objects are also denoted as fiduciary markers. The main advantages of

extrinsic methods are in fast and easy detection of corresponding coordinates, relatively ac-

curate registration (0.5mm minimum error [151, 37, 152]), and feasibility of full automation

of the registration procedure. However, in many cases of medical CLSM data, for example,

uveal melanoma tissues, it is difficult to use fiduciary markers [133]. For example, the intro-

duction of markers internally may distort paraffin embedded tissue and its areas of interest.

On the other hand, markers placed outside the tissue may migrate during sectioning or ex-

pansion of the paraffin.

Intrinsic methods are performed by using measured image contents, e.g., intensity, edge

structures, etc., without introducing artificially inserted objects. Registration is typically

performed by intensity-based, feature-based, or moment-based approach [103]. Since intrin-

sic methods do not require artificially inserted markers, they do not distort tissue struc-

ture, and make the preparation process much easier. However, since medical structures

are highly deformable and contain high intensity variation, accurate registration without

fiduciary markers is considered as a very challenging problem. In our problem, based on

the material preparation and laminin-positive structures function (i.e., lit up pixels on the

stained tissue) imaged by fluorescent CLSM, the automated 3D reconstruction process with-

out fiduciary markers is based on the following two assumptions. First, at least one frame

from each 3D sub-volume contains a set of closed or partially opened visually salient contours

representing laminin-positive structures (presence of registration features). Second, certain

shape characteristics of these salient contours, e.g., centroid or area, remain invariant under

translation and rotation transformations (shape invariance of registration features across
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two 4µ sections). In the remainders of section 2.2, I survey different types of registration

methods for medical specimen without external fiduciary markers.

2.2.1 Registration approaches

Medical image registration approaches have been categorized in different ways by many

surveys [97, 103, 64, 16, 26]. In this dissertation, I used the four main categories according

to [26]: (1) point based, (2) feature based, and (3) moment based, and (4) correlation based

approaches.

Point based approaches

A registration using a point based approach is performed by establishing coordinates of

corresponding points in different images usually by manual or semi-automated methods.

Relying on intrinsic features only, the point selection can be performed by user interactive

pixel selection of some identifiable points, e.g., blood vessel bifurcation points, intersections

of structures, or particularly identifiable topographic points [61, 62, 63].

Given the coordinates of corresponding points and a transformation model, the model

parameters are estimated [103] using a singular value decomposition [4], an eigenvalue de-

composition [66], or unit quaternions [35, 65].

Point-based approaches significantly reduce erroneous matches, e.g., outliers, if (1) point

selection is performed by knowledgeable users and (2) there are enough identifiable features,

e.g., intrinsic features with anatomical meaning. However, since the task generally requires

user interactions, the manual process requires very intensive labor, a good user interface,

and anatomical knowledge [30, 31, 61, 62, 63]. More importantly, the registration quality is

heavily dependent upon a software environment, e.g., user interfaces, and the expertise of

end users.
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Feature based approaches

A registration using feature based approach is achieved by identifying a large enough dis-

tinctive anatomical structure, e.g., curve or line, or by detecting multiple sufficiently salient

point features. A curve matching method has been mainly used for registering cardiac images

with a rigid transformation (also known as the “head-and-hat” method [112]). The method

searches for the best matches of a pair of contours iteratively using a rigid transformation

after manually extracting the boundary (surface) of structures from images. Advancements

of this method using a multi-resolution based approach were proposed in [140] to reduce

the computational cost. For smooth surfaces, other researchers presented a good registra-

tion quality using crest lines [54, 113], hash tables of geometrical invariants together with

the Hough transform [55], or the iterative closest point algorithm [12]. Although curve

based registration methods are used in many CT or MR images, the major drawbacks of

these methods are as follows: (1) there must exist confidently identifiable features, i.e., lim-

ited to some application domains, (2) image segmentation must be performed manually by

knowledgeable users, (3) a good initial position needs to be manually defined, (4) local de-

formations of a template (i.e., an image to be searched) can cause erratic registration if the

target structure differs from the template, and (5) the registration accuracy heavily depends

on segmentation quality.

Instead of relying on a single detected feature, one can select multiple features, e.g.,

a set of closed contours, with lower confidence in comparison to contour based methods.

Correspondences of detected features can be established by semi-automatic [85] or fully au-

tomatic method [86]. Semi-automatic methods display segmented regions for shape matching

by users. Next, transformation model parameters are estimated by the least-squares fitting

based on the corresponding feature sets. Given a transformation model, (erroneous) outliers

can be efficiently removed by examining residuals after fitting. Fully automated methods

can be utilized by solving Procrustes problem when a sufficient number of features (e.g.,
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closed regions) is detected [52, 68, 78, 131, 121, 24]. The main advantage of using multiple

features is that the computation of centroid points after region selection greatly improves

the registration accuracy and consistency. This improvement has been documented with

semi-automated and fully automated method approaches regardless of user expertise [9].

Moment based approaches

A registration using moment based approaches has been typically used for computing a rigid

transformation from a centroid and a principal axis of a set of features [27, 2, 80, 141, 142].

After extracting a set of features, e.g., volumes, surfaces, scattered points, the translation is

computed from the centroid of the set of feature coordinates, and the rotation is derived by

matching principal axis of the features in the compared images.

Since the accuracy of moment based methods heavily depends on the accuracy of ex-

tracted features, semi-automatic method is generally used for feature extraction to remove

inconsistently placed features [141, 142]. In addition, it is often the case that the principal

axis is not uniquely defined, i.e., features are evenly distributed. For the CLSM data of

interest, such as cellular level tissue, the accurate registration might be difficult due to high

morphological deformation of structures, intensity heterogeneity, and unpredictable distri-

bution of features, e.g., blood vessels.

Correlation based approaches

A registration using correlation based approaches is usually performed by searching for the

optimal transformation parameters that maximize the similarity of compared images. The

method usually requires a large amount of computation since it considers full image contents

and all possible transformation parameters to compare similarity. For this reason, correlation

based methods are considered to be able to be automated if high performance computing

resources are available. For more efficient computation, a multi-resolution based method has
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been used [6].

The most critical part of accurate registration is the definition of the similarity metric [64].

Some widely used similarity metrics include normalized cross-correlation, normalized mutual

information, phase correlation in Fourier domain, and correlation of image variance, optical

flow, zero-crossing and so on. [97]. A correlation based approach usually performs well for

mono-modal image registration with relatively homogeneous intensity distribution [103]. One

should avoid using the correlation based method on images with high noise, morphological

distortion, and/or intensity heterogeneity, since the search for similarity maxima could result

in erroneous registration by being trapped in its local maxima. The problem of local maxima

could be solved by genetic algorithms or simulated annealing [101]. Nevertheless, in our case,

high intensity heterogeneity and morphological deformation of CLSM images would still lead

to high probability of inaccurate alignments along z-axis (sub-volume alignment).

2.2.2 Registration for CLSM data

The 3D reconstruction of vasculogenic mimicry patterns from CLSM data is considered as

a registration problem [97] requiring image pre- and post-processing steps to permit 3D vi-

sualization and quantification of these geometrical structures [157]. There is an abundance

of registration techniques and publications in the literature [64, 16, 162]. In the medical do-

main, several 3D volume reconstruction techniques have been developed based on specialized

image acquisition procedures, e.g., using a linear differential transformer [1], or truncated

pyramid representation [109]. There also exist many commercial tools from multiple vendors

that could be used for manual registration. For instance, an overview of 3D registration tools

for MRI, CT, confocal, and serial-section data for medical or life-sciences imaging is pro-

vided at the Stanford 1or at the NIH web sites 2. Most of these tools use manual registration

1Stanford web page with references to 3D volume reconstruction software packages.
http://biocomp.stanford.edu/3dreconstruction/refs/index.html
and http://biocomp.stanford.edu/3dreconstruction/software/

2NIH website.
http://www.mwrn.com/guide/image/analysis.htm
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methods because automation of 3D volume reconstruction is very difficult. Some software

packages include semi-automated or fully automated 3D volume reconstruction for specific

imaging modalities under the assumption that visually salient markers have been inserted

artificially in imaged specimens.

Based on my knowledge, there has been limited work on understanding accuracy, uncer-

tainty, consistency and computational complexity characteristics of 3D volume reconstruc-

tion and their relationships to registration decisions. The past work usually addressed only

certain aspects of registration decisions, for example the choice of transformation models

[97], the combination of invariant registration features [18], the image data quality evalu-

ation metrics [155], the choice of shape metrics [118], or the process of geometric (spatial

registration related) and radiometric (intensity related) adjustments [122]. The past work

has originated primarily from the computer vision community when tackling the problem of

matching and alignment from points and frames while modeling rigid motion of objects [41].

For example researchers, such as Pennec and Thirion [113, 114], have developed a theoretical

model defining the relationship between uncertainty of a rigid transformation applied to a

set of 3D points or 2D frames and the registration accuracy. However, the model is defined

for only a very small subset of typical registration decisions.

2.3 Overview of Volume Reconstruction from CLSM

Imagery

I provide a multi-step 3D volume reconstruction framework. The framework does not assume

the presence of fiduciary markers since they could not be used according to our medical

collaborators. Depending on the dimensionality of registration features, the process of 3D

volume reconstruction is divided into two sub-processes as shown in Figure 2.1.

The overall volume reconstruction process is performed in the following steps:
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Figure 2.1: The process of 3D volume reconstruction from fluorescent confocal laser scanning
microscope 3D sub-volumes. The dashed box indicates an optional step.
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1. Sub-volume intensity analysis: Analyze image intensity quality from input sub-

volumes to select the most salient image frame. The selected frame is used for image

mosaicking and alignment process (segmentation, feature detection, feature matching,

and matching refinement) when using 2D information. For registration using 3D in-

formation, all frames are used to extract 3D features, and therefore, this step is only

used for tile mosaicking (Section 3.3).

2. Tile mosaic: Mosaic image tiles in lateral coordinate (e.g., x-y coordinate) using

manual, semi-automated, or fully automated method. First, manual method refers to

manual selections of corresponding pixel coordinates by users. Second, semi-automated

method uses 2D centroid features (as the same way in 2D steps in Figure 2.1 ”seg-

mentation” and ”feature detection”) for user region selection. Third, fully automated

method is performed by intensity-based correlation method (e.g., normalized cross cor-

relation). Note that the intensity-based method performs relatively well for mosaicking

since the selected frames typically present relatively high contrast, entropy, and homo-

geneous intensity distribution. In addition, based on the assumption from instrumental

measurements, mosaicking only requires translational transformation which is feasible

to implement in terms of computational complexity. In result, I show a performance

evaluation by a user study (Section 3.4).

3. Segmentation: Segment out closed or partially opened 2D regions or 3D volumes

(Section 3.5).

• 2D segmentation: 2D (partially) closed regions are segmented out using a region

growing method based on a disc. Instrument noise is effectively removed by

setting relatively high background threshold with large disk size where background

threshold and disk size is selected from data-driven analysis (Section 3.5.1).

• 3D segmentation: 3D (partially) closed volumes are segmented out using volume

growing method based on a 3D sphere. 3D sphere generates a smoother feature
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trajectory of a volumetric feature in comparison to a series of 2D centroid regions

along axial (z-axis) direction (Section 3.5.2).

4. Feature detection: Compute features of segmented regions (e.g., centroids and areas)

or volumes (e.g., centroid trajectory). Due to high deformation in cellular structures,

precise shape descriptors (such as contour shape) may result in poor matching results.

Instead, I approached the problem of feature selection with rather simple region shape

descriptors (such as area and centroid) that are relatively more invariant to morpho-

logical deformation (Section 3.6).

5. Feature matching: Find a set of pairs of matching features. As described in the

”feature detection” step, robust features matching is difficult when using individual

region descriptors. Therefore, fully automated method uses qualitative configurations

of centroid locations to establishing feature correspondence, considered as an extension

of the Procrustes problem [24]. Experiments show that this method is more robust to

segmentation error and image noise. In this step, I developed manual, semi-automated,

and fully automated methods (Section 4.4).

6. Matching refinement: Refine matching coordinates based on multiple evaluation

categories.

• 2D refinement: intensity similarity is one of the evaluation categories for finding an

optimal (pixel-level) matching of the corresponding features. Since this process

is computationally extremely expensive, it was only performed in a relatively

small pixel neighborhood of selected features. I discuss the computation cost and

accuracy of the results (Section 4.5.1).

• 3D refinement: the main purpose of 3D refinement is in smoothing sub-volume

boundaries across physical cross sections. I used two evaluation metrics, such as

structural connectivity and model fitting (Section 4.5.2).
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7. Global transformation estimation: Transform sub-volumes to the reference coor-

dinate system based on the computed global transformation. Based on the assumptions

from data acquisition, I used an affine transformation model for global transformation

(Section 4.6).

8. Visual enhancement: Enhance voxel intensities of a reconstructed volume for visual

inspection purposes. I developed an intensity correction method and evaluation metrics

for multiple visual enhancement techniques (Section 5).

2.4 Registration Decision Support System

This section describes data-driven optimization approaches to four registration decisions in-

cluding image size selection, rigid or affine transformation model, intensity or morphological

invariant feature selection, and manual (pixel-based) or automated (centroid-based) automa-

tion level. The reason for using data-driven approaches lies in the large variability of objects

of interest, specimen preparation, imaging modality, specific instrumentation characteristics,

and so on, that is extremely difficult to model analytically with any generality whatsoever.

I frame the problem first by presenting the links between 3D reconstruction accuracy and

registration variables. Then, I lead to the data-driven methods for optimal choice of registra-

tion variables. The experimental results illustrate how the developed web-enabled software

would be used by researchers to make the most optimal data-specific registration decisions.

The overview of most common registration decisions is provided in Figure 2.2. In Figure

2.2, one should view vertical black arrows as possible decision outcomes during the regis-

tration process and hence any possible combination of user decisions would characterize the

obtained registration result. Some of the decisions could be easily expanded, e.g., other

transformation models. Other decisions could be elaborated, such as methods for establish-

ing ground truth could be classified into visual inspection, comparison with ground truth

data, or measuring the degree of deviations from assumed data model. The purpose of Fig-
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Figure 2.2: Registration decisions and their impact on registration results.

ure 2.2 is to present basic registration decisions rather than an exhaustive list of possible

decision selections.

The user-driven registration decisions define the complexity of (a) registration model,

(b) model parameter estimation, (c) registration computations to be performed, and (d) eval-

uation strategy. For example, the case of a manual registration (alignment) of two image

sub-areas containing a few features (visually salient pixel arrangements) using rigid trans-

formation (rotation and translation) by overlaying two sub-areas and visually assessing the

quality of alignment would be considered as a low complexity registration. It would use the

simplest transformation model (rigid), subjective parameter estimation (visual), no compu-

tation (manual), and visual method for evaluating registration quality. In contrast, the case

of a fully-automated alignment of two large images containing several millions of features us-

ing affine transformation (rotation, translation, scale and shear) by exhaustively evaluating

the range of affine transformation parameters based on invariance of intensity (e.g., using
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normalized cross correlation or normalized mutual information) would be considered as a

high complexity registration. In this case, the registration uses consistent parameter esti-

mation by evaluating invariance of intensity, consuming significant computational resources

and performing registration quality evaluations using mathematically defined metrics and

based on a set of assumptions about data.

2.4.1 Impacts of registration decisions

Registration decisions during medical cross section alignment have a great impact on (1) an-

ticipated accuracy of aligned images, (2) uncertainty of obtained results, (3) repeatability of

alignment, and (4) computational requirements. As illustrated in Figure 2.2, the registration

decisions affect (a) spatial distribution of registration error (global vs. local registration),

(b) registration error composition (model overfitting, mosaicking x-y error, and alignment z

error), (c) computational requirements on registration (invariance assumption and its degree

of freedom, model complexity, search space to optimize parameters), and (d) validity of the

obtained results (robustness of a registration model with respect to data deviations, quality

of evaluation data and criteria).

Alignment Accuracy: The accuracy of aligned images can be measured either by visually

inspecting anticipated structures or by defining quantitative metrics to evaluate accuracy

with respect to ground truth data (or a data model defined a priori). The analyses consist of

simulations with rigid and affine registration transformation and development of registration

error models for better understanding of alignment results.

Uncertainty of Alignment Results: As illustrated in Figure 2.2, multiple registration

decisions impact alignment uncertainty and include the decisions about (1) the tradeoffs
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between global or local registration fit (image spatial size decision), (2) the issues of trans-

formation model overfitting (transformation model decision), (3) the degree of assumed in-

tensity and morphological invariance (feature invariance decision), (4) the size of parameter

search space and the algorithmic robustness to model deviations (automation level decision),

and (5) the goodness of evaluation criteria for a registration problem. These uncertainties

are very difficult to evaluate analytically and are very much data specific.

In order to understand registration uncertainties, data-driven evaluation software tools

might provide insight about the anticipated result quality. Since some level of uncertainty

is introduced to alignment results from every registration decision, I developed data-driven

analysis which calculates (1) normalized correlation based error as a function of image sub-

area size, (2) error residuals as a function of rigid or affine transformation models (model

complexity), (3) the degree of intensity and morphological invariance, (4) the total search

space size for semi-automated and fully-automated registration, and (5) error residuals as a

function of evaluation metrics (normalized cross correlation or normalized mutual informa-

tion).

Repeatability of Alignment: Repeatability can be viewed as the consistency of align-

ment results obtained using multiple methods and processes [132]. The alignment processes

usually include humans and computer algorithms. In general, alignment repeatability varies

depending on the level of automation, registration methods, and the complexity of human

input. The higher automation level leads to better convergence of registration methods to

global extreme [18]. In the semi-automated case, the less complex human input will lead to

higher alignment repeatability.

The repeatability issue is usually addressed by performing studies using human subjects

[85]. The studies are based on either a class of images acquired by the same imaging tech-

niques and from similar specimens or a class of synthetic images that simulate different

degrees of deviations from a registration model. Algorithmic repeatability is often evaluated
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together with its robustness to test that the algorithm avoids getting trapped in local minima,

and can reliably find the best global minimum in complex landscapes defined by objective

functions. Similarly, any measured repeatability due to automation is based on (a) making

assumptions about acquired data, for instance, assuming feature invariance, (b) allowing

only a subset of possible registration transformations (model constraints), or (c) searching

only a subspace of possible transformation parameters. Thus, usually the robustness and

accuracy of cross section alignment is decreasing with an increasing level of automation for

data sets deviating from the automation model and violating the registration assumptions.

In order to understand repeatability issues, we developed web accessible registration tools

that allow researchers to upload their data and collect measurements about repeatability as

a function of (a) the complexity of human input (pixel or segment selection), (b) the level

of automation (manual or semi-automated registration), (c) human expertise (experts and

novices), and (d) data sets deviating from automation models.

Computational requirements: The computational requirements of alignment are di-

rectly proportional to the level of automation, the complexity of transformation model, and

to the search space of transformation parameters. Furthermore, computational requirements

for accommodating all researchers interested in using the same software with multiple reg-

istration tasks also have to be addressed.

In the prototype software, we utilize high performance computing resources at the Na-

tional Center for Supercomputing Applications (NCSA) to guarantee sufficient computing

power. The registration decision support software is also designed using web services tech-

nology that enables connecting multiple researchers at several geographical locations with

computational resources at NCSA [76].
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2.4.2 Optimization tools for registration decisions

Given a set of registration decisions and their impacts on accuracy, uncertainty, repeatability

and computational requirements, there is a need for a set of methods and software tools

to support optimal registration decisions. This work aims at providing such a solution

that can be described as a web-enabled, web services-based and data-driven registration

decision support system. The system includes methods and software tools that provide

data specific understanding of registration decision tradeoffs, such as (1) image sub-area

size and location selections, (2) transformation model selection as a function of registration

accuracy and possible image distortions (e.g., rigid or affine model), (3) registration feature

selection (invariance of intensity or morphological features), and (4) choice of automation

level (manual, semi-automated, or fully-automated). All of the above tradeoffs are evaluated

as a function of registration accuracy. In addition, the system provides guidelines for an

assessment of needed resources (geographically local or distributed computational resources

and human expertise).

Image sub-area size and location selection: Specifically, the first method supporting

registration decisions enables uploading two images from a 3D volume, selecting a sub-area

of interest, and then it reports a visualization of a correlation coefficient as a function of

incrementally increasing sub-area size, as shown in Figure 2.3. The correlation coefficient

is used as registration accuracy metric in this case (see Figure 2.4). If two identical frames

would be compared then the correlation metric value equals to one. The frames that would

be completely dissimilar would lead to the value of zero.

Transformation model selection: The second method allows uploading two images to

be registered, manually placing disks of variable size over visually matching features, and

selecting rigid or affine transformation to compute the registered image pair. An example
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Figure 2.3: Supporting registration decisions about image sub-area size. A similarity of a
pair of sub-areas from the left and right images is evaluated by computing a normalized
correlation value as a function of a sub-area location and its size.

 


Figure 2.4: The result of processing multiple image sub-areas selected according to Figure
2.3. The resulting graph shows normalized correlation values of a pair of two band images
as a function of a sub-area size.
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Figure 2.5: Supporting registration transformation model selection. A choice of rigid or
affine transformation model is evaluated by reporting a registration transformation error
and by inspecting the level of distortion in the overlaid registered images. The red and blue
disks are used for establishing matching pairs in a pair of images. The left panel shows a pair
of original images (overlaid and inspected by moving the transparency slider bar below the
panel). The right panel illustrates the registered sets of red and blue disks and the overlaid
images after transformation.

is shown in Figure 2.5. The reported registration transformation error and the level of

distortion in the overlaid registered images with registration disks are used for aiding the

choice of registration model.

Registration feature selection: The third method supporting registration decisions pro-

vides degree of intensity variation for intensity-based approach. If morphological change in a

sub-volume is negligible, the spatial intensity-variation along depth (z-axis) can be measured

by computing intensity similarity (e.g., normalized cross correlation coefficient) between an
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image pair. To deal with the presence of morphological changes, I used low-pass filtered

images for intensity similarity comparison. Since the low frequency component of an im-

age suppresses sharp morphology changes and noise such as internal structures (e.g., lines,

contours), the low-pass filtered image can be used as an estimate of image with intensity

variation only within a sub-volume. This method supports decision of usability of intensity-

based method based on a user-defined threshold of intensity variation. The decision rule

can be defined as follows: if degree(intensity variation) > δthreshold then use feature-based

method (manual, semi-automated, or fully automated), else use intensity-based method

(normalized-cross correlation or normalized mutual information), where δthreshold are user-

defined threshold.

Automation levels: The fourth method provides an interface to pixel-based (manual)

and segment centroid-based (semi-automated) registration methods. A user can choose any

two images from a 3D stack of pre-segmented images, perform registration using manual or

semi-automated registration and compare the registration accuracy. If pre-segmented results

are not available then segmentation and segment centroid extraction will be conducted.

2.4.3 Results

This section describes how the set of developed methods was used for making optimal regis-

tration decisions during 3D volume reconstruction of the specimens imaged by CLSM. Other

researchers processing CLSM images may follow similar data-driven procedures to choose

optimal 3D volume reconstruction parameters, such as registration area size, rigid or affine

transformation model, intensity or morphology as invariant feature across cross sections, and

pixel-based (manual) or centroid-based (semi-automated) alignment method.
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Data-driven analysis

Image Spatial Size: From a medical user view point, one would like to obtain 3D volume

reconstructions over a large spatial area at a high spatial resolution, and with the best

possible visual alignment of all salient image features. It is assumed that the visual alignment

of salient image features is measured by a normalized correlation coefficient. Then, the goal

is to provide data-driven analysis of input data to understand the tradeoffs between these

two conflicting requirements, such as to maximize aligned image area and its measure of

alignment goodness (e.g., normalized correlation coefficient) with other images.

In order to compute a data-driven dependency between normalized correlation metric and

image sub-area size, at least two frames have to be aligned. Otherwise, other registration

unknowns would be inseparable from the variables under our scrutiny. In the case of CLSM,

we can establish the data driven dependency by using any two frames from one stack of

images. The assumptions are that these two selected frames are representatives of the two

frames from two adjacent cross sections without any distortion due to specimen slicing, and

the frame-to-frame morphology and intensity changes in the selected frames from one sub-

volume are similar to those in the adjacent sub-volumes.

For the input data set with four sub-volumes, I used varying sub-area sizes of images

shown in Figure 2.6 from 24648 pixels (79×78) to 1236444 pixels (561×551) by increments

of 2% of the entire number of pixels (approximately 25000 pixels). Figure 2.8 illustrates the

dependency of the level of similarity measured by normalized correlation as a function of

pixel count (sub-area size in pixels). The normalized correlation coefficients represent the

maximum value obtained by optimizing spatial overlays using the affine transformation for

every pair of image sub-areas. We can observe that the maximum similarity is obtained

for the smallest experimental sub-area, and the minimum similarity is reported for the full

image. Thus, alignment results for a sub-area that is approximately 37 times smaller than

the full image size (915, 788/24, 648) will lead to 13% absolute improvement (0.85 − 0.72),
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Figure 2.6: Two images used for demonstrating the impact of image sub-area versus entire
image registration tradeoffs (image spatial size decision). The images came from one stack
of CLSM images and hence the ground truth alignment was known. The slides are 13
frames apart (1.7 microns distance along z-axis) , and each pixel represent 0.478 microns
(536 microns by 527 microns for the entire image).

and 46% relative improvement with respect to the best (1.0) and worst (0.72) alignment

of the two frames (0.85 − 0.72)/(1 − 0.72). If one would like to explore the relationship

without intensity variations then thresholded images can be evaluated the same way as.

The thresholded images are shown in Figure 2.7 and the dependency is shown in Figure 2.8.

Transformation Model: Let us assume that a class of CLSM images acquired from

similar tissues can be perfectly registered by an unknown transformation with N parame-

ters. The N parameters define the order of transformation model. It is well known that a

higher order transformation model than N would lead to data overfitting while a lower order

transformation model than N would lead to large registration errors. In our case, overfitting

would lead to distortions in the transformed image that could never happen in the original

cross sections although the registration error would be small and indicate a good alignment.

Using lower order transformation model might likely never satisfy the transformation error

defined as user requirements.
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Figure 2.7: Two binary images derived from the images in Figure 10 by intensity thresholding
to demonstrate the impact of image sub-area versus entire image registration tradeoffs (image
spatial size decision) for the case of zero intensity variation.
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Figure 2.8: Normalized correlation coefficient as a function of image sub-area size in pixels
for two perfectly aligned images that are 13 frames apart (1.7 microns apart), each image is
of pixel size 1123 by 1104 corresponding to spatial resolution 536 microns by 527 microns
(entire image). The two curves correspond to original image (blue) and thresholded image
(pink). The images are shown in Figure 2.6 and Figure 2.7. The normalized correlation
coefficient represents a quantitative metric (similar to visual inspection) that ranges from
[0, 1]. For our data set, we decided to use the entire image area equal to 561x551 pixels.
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Table 2.1: Summary of registration errors obtained using rigid and affine transformation
models for the same set of four matching pairs of points. The residual errors X, Y and
(X, Y) are computed as a sum of squared differences between the transformed coordinates
of image 1 and the user chosen coordinates in image 2. The original residual error (X, Y)
before any transformation was equal to 12.782.

Transformation Model Residual X Residual Y Residual (X,Y)
Rigid 1.528 1.802 1.225
Affine 0.927 1.581 0.935

The tradeoffs between transformation model complexity and registration error are usually

resolved by practitioners based on a good understanding of medical specimen preparation.

For example, for imaging cross sections of solid and hard specimens, rigid transformation

might be appropriate (rotation and translation). If cutting the specimen introduces addi-

tional shear and scale changes, then affine transformation would be appropriate (rotation,

translation, scale and shear). Our goal is to provide data-driven analysis of input data to

understand the tradeoffs between these two conflicting requirements, such as to minimize

transformation model complexity and registration error.

The task can be achieved by uploading two frames from two adjacent sub-volume im-

ages, manually placing disks of variable size over visually matching features, and selecting

rigid or affine transformation to compute the registered image pair. The registration error

for these two transformation models is summarized in Table 2.1. It provides a quantitative

comparison of complexity versus error tradeoffs. For our data set, I used affine transforma-

tion model.

Invariant Registration Feature: To quantify the degree of intensity variation, I fol-

lowed the steps: (1) perform low-pass filtering to all the frames in a sub-volume with different

filter sizes, (2) compute a set of normalized cross correlation coefficients by comparing the

first frame (e.g., frame 1) and other frames (e.g., frame 2, frame 3, etc), (3) decide a low-

pass filter size which mostly suppresses morphological deformation (i.e., images that estimate
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intensity variation only), (4) find the maximum intensity variation (normalized cross cor-

relation coefficient) using low-pass filtered images with intensity variation only (computed

filter size in step 3), (5) decide whether the intensity-based method can be used based on

the user defined threshold δthreshold.

Figure 2.9 shows the intensity similarity (normalized cross correlation coefficient) using

different low-pass filter size for multiple pairs of frames. The x-axis represents a frame num-

ber of an image which is compared with the frame 1, and each curve represents a normalized

cross correlation coefficient with different filter sizes (e.g., 1 100). One can observe that the

similarity decreases along large gaps (i.e., frame depth) of the selected frames. Therefore, we

could select the frame pair that represents the largest morphological deformation (frame 1

and frame 24) to decide the low-pass filter size. Figure 2.10 shows the similarity of the image

pair, frame 1 and frame 24, as a function of the low-pass filter sizes. One can notice that

the similarity increases relatively rapidly up to the filter size equal to 40, and then stabilizes

after. It implies that the morphology hardly contributes to the similarity relatively. As a

result, we chose the low-pass filter size as 40 pixels neighborhood to compute the intensity

variation. Finally, the lowest similarity due to intensity variation can be found by examin-

ing the curve with the filter size of 40 pixels in Figure 2.9, which is 0.702. Note that this

value is relatively low since the result is based on the assumption that there is only intensity

variation (e.g., no morphological change).

In Figure 2.9, one could argue that the morphological deformation is not removed well

based on the curve which keeps falling, but in our data set, it is observed this is caused not

by morphology but by intensity variation. Figure 2.11 supports the argument by showing

the similarity of adjacent image frames. Assuming the rate of morphological deformation

is constant along depth, Figure 2.11 shows low similarity at frame 15 through 23. It is

interpreted that the intensity variation is more severe in this range. One could also visually

verify the fact from Figure 2.12.
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Figure 2.9: Intensity similarity (normalized cross correlation coefficient) using different low-
pass filter size for pairs of frames. The x-axis represents the frame number which is compared
with the frame 1, and each curve represents a normalized cross correlation coefficient with
different filter size.
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Figure 2.10: The similarity of image pair, frame 1 and frame 24, as a function of low-pass
filter size.
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Figure 2.11: The similarity of adjacent image frames.
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Figure 2.12: Image frames from 1 to 24
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Automation Level: The goal of this step is to decide the level of automation based on

the registration accuracy, computational resources, and geographic locations of needed 3D

volume reconstruction expertise. We approached this problem as follows: The evaluations

of registration accuracy at multiple levels of automation require involvement of human sub-

jects and careful preparation of ground truth data. We have conducted a user study in the

past using manual or semi-automated registration techniques [85] and decided to use the

semi-automated (segment centroid based) automation level. By web-enabling the developed

software, other researchers can perform similar studies to the study published in [76] and

support their data-specific decision about the level of automation.

The problem of available computational resources and geographically distributed exper-

tise was solved by developing a web service-based mechanism for registration that provides

access to image data at the location with 3D volume reconstruction expertise and performs

computation at the location with computational resources. Other researchers would be able

to use the same prototype developed for our 3D volume reconstruction and evaluate their

data-driven decision about an appropriate automation level.

Registration decisions

Based on the experimental data-driven evaluations, registration decisions are supported to

choose (1) an entire image size for registration, (2) affine transformation model to compen-

sate for observed warping, (3) morphology as the more invariant feature than intensity and

(4) semi-automated (or fully automated) centroid-based technique over pixel-based registra-

tion method. These registration decisions are optimal given the choice of accuracy quality

metrics and algorithmic approaches. We provide next the discussion about (a) the need to

have 3D volume reconstruction quality specifications, (b) the pros and cons of analytical and

data-driven modeling approaches to registration decisions, (c) the challenges associated with

computing and comparing the degrees of intensity variation and morphological distortions

40



and (d) the difficulties with evaluations that support registration decisions.

3D volume reconstruction quality specifications: The outlined procedure for op-

timizing registration decisions brings up several issues related to well-defined 3D volume

reconstruction requirements. In a real world scenario, input data are not ideal, and 3D

volume reconstruction accuracy requirements are limited by the nature of specimen prepa-

ration, data acquisition, and processing. It was demonstrated that the requirements for

the 3D volume reconstruction presented in this section have to include several user-defined

parameters. First, a user has to define the minimum area of the interesting region and the

minimum intensity similarity (e.g., normalized cross correlation coefficient) for accepting

the alignment results (image sub-area size decision). Second, there is a need to specify the

minimum registration error improvement due to increased transformation model complexity

for adopting more complex transformation model (registration model decision). Third, one

would specify the instrument noise threshold value to separate intensity variations from mor-

phological deviations, as well as the 3D model for segmented structures and the maximum

estimated deviation from the model for accepting registration feature invariance (invariant

feature decision). As for the automation level decision, a user has to decide what accuracy

and repeatability of reconstructions would be acceptable as a function of automation.

Analytical and data-driven modeling approaches: To consider the impacts of regis-

tration decisions on (1) anticipated accuracy of aligned images, (2) uncertainty of obtained

results, (3) repeatability of alignment, and (4) computational requirements, we have offered

data-driven models that facilitate the understanding of real data acquired from instrumen-

tation. The reason for choosing data-driven models instead of analytical models lies in the

large variability of objects of interest, specimen preparation, imaging modality, specific in-
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strumentation characteristics, and so on. The use of analytical models might not be feasible

(lack of knowledge) or introduce too many assumptions about data so that the generality

of the models is very small. As illustrated in the previous sections, the data-driven ap-

proach to support 3D volume reconstructions is more feasible and general. For example, it

is addressing several basic registration decision problems related to (a) what variables play

major roles during 3D volume reconstruction, (b) how relevant 3D reconstruction variables

(parameters) depend on each other and how they impact resulting 3D reconstruction, (c)

how to optimize the choice of 3D reconstruction parameters, and (d) what solutions could

accommodate computational and expertise requirements during 3D volume reconstruction.

Evaluations supporting registration decisions: Ideally, one would like to perform

data-driven evaluations with all possible registration accuracy metrics, all registration meth-

ods and approaches, and with unlimited computational resources. Each researcher would

assess his/her data variability and quality with respect to the 3D reconstruction task un-

der multiple modeling assumptions and without computational constraints. While this is

currently unobtainable, the work presents a methodology how to obtain better 3D volume

reconstruction understanding given a limited subset of metrics, methods, and resources. In

addition, the evaluation problems related to human subject selection, ground truth data

preparation, and 3D volume validation (just to name a few), are beyond the scope of this

dissertation but might be of interest to a user evaluating automation levels.

2.5 Summary

I presented a framework of 3D volume reconstruction using blood vessels and vasculogenic

mimicry patterns in histological sections by CLSM. To my knowledge, there have not been
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developed robust and accurate fully automated 3D volume reconstruction methods from a

stack of CLSM images without artificially inserted fiduciary markers. The proposed frame-

work is also unique in terms of forming a complete system for medical inspection of 3D

volumes reconstructed from CLSM images. The approach to automate the reconstruction

process incorporates the tradeoffs between computational requirements and uncertainty of

resulting reconstructions introduced by each processing step.

In addition, I addressed the problem of optimal registration decisions during 3D medical

volume reconstruction. The registration decisions of interest included (1) image spatial size

(image sub-area size), (2) transformation model (rigid or affine), (3) invariant registration

feature (intensity or morphology), and (4) automation level (manual or semi-automated).

I provided mechanisms for evaluating the tradeoffs of each registration decision in terms

of 3D volume reconstruction accuracy, repeatability and computational requirements. Fur-

thermore, I presented software tools for geographically distributed researchers to optimize

their data-driven registration decisions by using web services and supercomputing resources.

Finally, I presented an example of optimal registration decisions supported by the developed

software and analyses. The example showed the case of 3D volume reconstruction of blood

vessels in histological sections of uveal melanoma from serial fluorescent labeled paraffin

sections imaged by fluorescence CLSM imaging.
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Chapter 3

SUB-VOLUME PRE-PROCESSING

3.1 Introduction

In this chapter, I describe sub-volume pre-processing steps such as (a) sub-volume intensity

analysis, (b) tile mosaicking, (c) segmentation, and (e) feature detection as shown in the 3D

volume reconstruction process in Figure 2.1. The input to the pre-processing step is a set

of images measured by CLSM and labeled with a slide number (physical section), a spatial

tile index, a frame number (optical section), and a measured channel number.

In section 3.3, I describe a frame selection method to select the most salient frame within

each image stack based on contrast and entropy analysis of every image frame. Next, in the

mosaicking, based on our data assumptions (see Section 1.4), I chose laterally adjacent images

from the same frame depth. The selected set of frames is mosaicked by manual (pixel-based),

semi-automated (feature-based), and fully automated (intensity-based) method described in

section 3.4. I also show the result of a user study to demonstrate the mosaicking accuracy

using different automation levels.

In section 3.5, I show 2D/3D segmentation methods applied to the mosaicked image

stacks (also denoted as sub-volume). In section 3.6, I describe the registration feature ex-

traction from the segmented regions. The goal of the 2D segmentation is to extract a set

of features for matching described in chapter 4. 3D segmentation provides high dimensional

features (e.g., centroid trajectory) for 3D matching refinement outlined in section 4.4.

The outputs of the pre-processing step are a set of features including centroid coordinates

associated with region areas and 3D centroid trajectories of 3D segments (volumes).
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3.2 Related Work

There are several known factors that cause spatial intensity heterogeneity, such as photo-

bleaching, fluorescent attenuation along confocal (depth) axis, image acquisition factors

[11, 124, 42], variations of illumination exposure rate, spatially uneven distribution of dye and

the spatial characteristics of illumination beams [107], and fluorochrome micro-environment,

e.g., pH, temperature, embedding medium, etc [138]. In particular, z-axis intensity hetero-

geneity can have a serious effect on CLSM images. It continues to bleach entire illuminated

three-dimensional volume equally, all of the time [135, 28].

Image restoration approaches toward z-axis intensity correction have been suggested

based on empirical correction methods for intensity loss [127], constant thresholding [69],

iterative correction methods [146, 126], 2D histogram [93], or estimations of intensity decay

function [75]. Beam attenuation can be corrected mathematically [124], but the bleaching

problem is non-linear and far more difficult to correct mathematically. Since the intensity

heterogeneity in our data set is caused by multiple factors described above, image restoration

techniques cannot be simply used since the method could amplify noise or distort structural

features, e.g., intensity enhancement of outliers.

Based on the assumption of intensity heterogeneity along z-axis and data acquisition, for

registration purpose, I select an image frame with the most salient structural information

based on a combination of a contrast measure and an entropy measure. After the frame

selection, the image tiles are mosaicked to generate a high resolution image frame (i.e., wide

field of view). In various scientific fields, mosaicking has been extensively used such as in

geo-referencing, mapping/localization for navigation, remote sensing, underwater imaging,

astronomy, medical imaging, etc [82, 29, 44, 83, 144, 105, 57, 123, 17, 34]. Generally, image

mosaicking is performed in the following order: First, establish correspondence between ad-
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jacent images. Second, estimate optimal transformation parameters with a known model.

Third, blend overlapping region of the images. Without considering blending operation, the

mosaicking can be considered as a sub-problem of alignment problem. The correspondence

problem can be approached by intensity-based or feature-based method (as described in next

section), and the parameter estimation can be performed using the RANSAC algorithm [36]

that evaluates multiple corresponding pixels randomly. However, in the case of CLSM data,

this problem can be significantly simplified due to the data acquisition assumptions such

as (1) tiles can be merged by using a translational transformation (two parameters), (2)

morphological deformation at the same depth (the same frame number) is minimal, and (3)

spatial intensity heterogeneity is minimal in the selected frames after the frame selection

step. Therefore, in this work, the mosaicking problem is reduced to matching problem (in-

tensity or feature) in 2D images. One of the main requirements in our medical image analysis

is that the image morphology (structure) must not be distorted during image processing.

Thus, I consider neither local image warping for smooth transition nor blending of imaged

structures.

Segmentation of the mosaicked image stacks (also denoted as sub-volumes) follows the

mosaicking step. Segmentation is usually referred to as a partitioning process of an im-

age/volume of interest into a set of regions with homogeneous intensity, texture, or structural

characteristics [58, 108]. The segmented 2D regions can be used for quantitative analysis

[84], structural diagnosis [156], pathological localization [161], or feature extraction for image

registration [85, 88].

Generally, segmentation methods are divided into eight categories based on their ap-

proaches; thresholding, region growing, classification, clustering, Markov random field mod-

els, artificial neural network, deformable model, and atlas guided method [161]. Although

there is an abundance of literature about segmentation of medical images, it is known that

the performance of each segmentation method heavily depends on specific imaging modality

and application domains [115]. For this reason, a segmentation approach needs to be selected
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based on appropriate assumptions about input data. In the case of automated vascular re-

gion detection in CLSM data, model-based approaches (classification, clustering, Markov

random field model, artificial neural network, deformable models, and atlas guided method)

cannot be used due to no prior knowledge about the structural shape, a high variety of

vascular region shapes, and high intensity heterogeneity. In segmentation, I used a method

that combines thresholding and region growing methods [9].

3.3 Sub-volume Intensity Analysis

As introduced in the framework in Chapter 2, sub-volume intensity analysis is performed to

find the most salient image sets that are to be used for mosaicking and 2D regions-based

alignment process.

First, based on the assumption of the material preparation and the image acquisition

process, a pair of sub-volumes can be mosaicked or aligned using one representative global

transformation since optical sectioning process does not change lateral configurations of

frames geometrically. For example, frames are perfectly aligned in a single sub-volume. For

mosaicking purpose, I used a set of representative image tiles (frames) in the same axial

depth from each spatially adjacent (in lateral plane) image stacks. For example, choose k-th

frame from all spatially adjacent image stacks. Therefore, it is preferred to select the most

salient frames from the same axial coordinate of sub-volumes, which provides high intensity

similarity and segmentation performance.

Second, in case of axial sub-volume alignment (z-axis) using 2D image information, it is

preferred to align a pair of sub-volumes based on a pair of depth adjacent frames, e.g., the

last frame of the first sub-volume and the first frame of the second sub-volume, because a

structural discontinuity would be expected to be minimal. Unfortunately, these end frames

of a sub-volume acquired by CLSM are usually characterized with much lower fluorescent
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intensities (i.e., signal-to-noise ratio) than other frames inside of a sub-volume due to the

physical constraints of fluorescent confocal imaging. For these end frames with low signal-

to-noise ratios, the alignment is difficult. Therefore, for sub-volume alignment based on 2D

information, I also assume that the typical depth of each sub-volume is small in comparison

with the rate of structural deformation, and therefore the frames other than the end frames

could be used for image comparison of depth adjacent sub-volumes.

3.3.1 Frame selection

This selection is performed in such a way that the pair of frames would provide high confi-

dence in any found features. In general, high confidence in image features is related to their

level of visual saliency (image intensity amplitude, contrast, spatial variation and distribu-

tion). From this viewpoint, I select an optimal pair of image frames that provides maximum

saliency of image features and is defined as:

Iopt = arg max
Ik∈Vi

{ENTROPY (Ik) × CONTRAST (Ik)} (3.1)

where Ik is an image frame (Ik ∈ Vi), Vi is a sub-volume, Iopt is the most salient image

frame. Note that ENTROPY is the information entropy based score, and CONTRAST is

the contrast based score as described below.

Information entropy: This saliency measure is based on evaluating each image frame

separately using the information entropy measure [129] defined below.

ENTROPY (Ik) = −
∑m

i=1
pi(Ik) ln pi(Ik) (3.2)
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where ENTROPY (·) is the entropy measure, pi(Ik) is the probability density of a fluores-

cent intensity value i of the image frame Ik, and m is the number of distinct intensity. The

probabilities are estimated by computing and normalizing a histogram of intensity values.

Generally, if the entropy value is high then the amount of information in the data is large

and a frame is suitable for further processing.

Contrast measure: This measure is based on the assumption that a suitable frame for

registration would demonstrate large intensity value discrimination (image contrast) from

the background. Thus, I evaluate contrasts at all spatial locations and compute a contrast

score according to the mathematical formula shown below.

CONTRAST (Ik) =
∑m

i=1
‖hi(Ik) − E(h(Ik))‖ × hi(Ik) (3.3)

where h(·) is the histogram (estimated probability density function) of all contrast values

computed across one band by using Sobel edge detector [129](Chapter 4) and E(h(Ik)) is

the sample mean of the histogram h(Ik). The equation includes the contrast magnitude

term and the term with the likelihood of contrast occurrence. In general, image frames

characterized by a large value of CONTRAST (·) are more suitable for further processing

than the frames with a small value of CONTRAST (·).

Section 3.7.1 shows the frame selection results from our CLSM input data.

3.4 Tile Mosaicking

Image mosaicking can be performed by visually inspecting spatially adjacent image frames in

x-y plane, selecting one or more pairs of corresponding points in the overlapping image area,

and computing translational transformation parameters for stitching image tiles together.

This approach is denoted as manual mosaicking and is supported by a software that enables
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pixel selection of matching pairs of points and computation of transformation parameters

from a set of control points. If a computer pre-computes salient feature candidates and

a user interaction specifies correspondences between any two features, then the method is

referred as semi-automated mosaicking. If images are stitched together without any human

intervention then it is referred to fully automated mosaicking. Based on the underlying

registration mechanism, I also denote manual mosaicking as the pixel-based method, semi-

automated mosaicking as the feature-based method, and fully-automated mosaicking as the

intensity-based method.

First, I present a manual mosaicking method that displays two spatially overlapping im-

age tiles to a user. A user selects a pair of matching pixels, and then image tiles are stitched.

In the next step, a user is presented with the already stitched image and a new tile to select

matching pixels. Manual mosaicking is performed in this way till all images are stitched

together and the final mosaicked image can be viewed for verification purposes. Second,

I present a semi-automated method that (1) highlights segmented vascular regions (closed

contours) as salient feature candidates and (2) computes a pair of region centroids, as control

points for registration, after a user defined two region correspondence. This semi-automatic

method is designed based on the observations that (a) an accurate point selection is much

harder for a human than an accurate region (segment) selection, (b) a centroid selection of

any region is less accurate by a human than by a computer, and (c) registration based on

structural shape of a region rather than on intensity-defined point is more robust to noise.

Third, I present a fully automated mosaicking method. Full automation can be achieved

by either automating feature-based registration process [49, 38, 92], or maximizing pixel

intensity correlation using computationally feasible search techniques (translational trans-

formation only) with normalized cross-correlation or mutual information metrics [119, 145].

To compare the mosaic accuracy it would be more natural to achieve full automation

by automating feature registration process. However, in CLSM imaging, it is not always

feasible to detect good features. For example, there can be lack of detected features in the
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Figure 3.1: Adjacent tiles of CLSM images: overlapping regions have few features (closed
regions.)

overlapping region as it is illustrated in Figure 3.1. In this case, the manual method or

intensity-based fully automated method needs to be used. As another case, if the images

suffer from high intensity heterogeneity (usually not as the case after frame selection), the

manual method is the only choice for tile mosaicking. In this work, performing accuracy

evaluations by comparing multiple techniques is independent of their underlying principles

and I focus only on their resulting mosaicking accuracy. One could also inspect the experi-

mental result to realize that the intensity based method (fully automatic) can lead to better

or worse results than the feature based method (manual and semi-automatic). In this work,

I demonstrate that the region centroid based registration method significantly improves per-

formance for 3D volume reconstruction of CLSM images in terms of achieved registration

accuracy, consistency of the results, and performance time.

For fully automated mosaicking, I used normalized mutual information and normalized

cross-correlation metrics to find the best match of spatially adjacent tiles and to provide

the sought translational offset for tile stitching. The main mosaicking advantages of these

intensity correlation based methods are in (a) their feasible computational cost for trans-

lation only, (b) robust performance for image tiles acquired with the same instrumentation

setup, and (c) no user interaction (full automation). For example, Figure 3.2 shows how a
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Figure 3.2: Image mosaicking problem: (left) Image tiles with colored borders and (right)
mosaicked image showing where each tile belongs in the final image based on its color.

high-resolution mosaicked image is constructed from nine image tiles.

3.5 Segmentation

The goal of this step is to segment out structural features that could be matched in image

frames or volumes from depth adjacent sub-volumes. A simple intensity thresholding fol-

lowed by 2D or 3D connectivity analysis [25] would lead to segments that are enclosed by

fluorescent pixels above a threshold value. Nonetheless, it is not always the case that all pix-

els along a segment circumference are lit up above the threshold that separates background

(no fluorescence) and foreground (fluorescent signal) because of specimen preparation imper-

fections and limitations of fluorescent imaging. Disregarding partially open/closed contours

or volumes of lit up pixels could lead to an insufficient number of segments necessary for

computing registration transformation parameters.
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Figure 3.3: Illustration of disk-based segmentation. A segment is formed as a connected set
of pixels covered by a disk while the disk moves within the fluorescent boundary. Depending
on the disk diameter and contour gaps a segment is detected or not.

3.5.1 Two-dimensional segmentation

I present a 2D region segmentation method that labels segments (regions) with partially

closed high intensity contours. The algorithm is based on connectivity analysis of a thresh-

olded image with a disk of a finite diameter, as it is illustrated in Figure 3.3. A disk is

placed at every background pixel location that has not yet been labeled. A segment (region)

is formed as a connected set of pixels covered by a disk while the disk moves within the

fluorescent boundary. The diameter of a disk determines what contours would lead to a

detected segment that represents closed contours with a few permissible gaps.

Selection of a disk diameter might affect interpretations of a contour depending on a

gap size. For example, Figure 3.4 shows multiple contour interpretations as a function of

disk diameter resulting to a line or one closed contour or two touching contours. These

interpretations are consistent with methods used by human investigators to select regions of

interest from a partially closed contour.

In order to automate the segmentation process, the threshold value and disk diameter

parameters must be chosen. The threshold value is usually based on the signal-to-noise ratio

53



DISK


INPUT CONTOUR


TWO SEGMENTS

DETECTED


SEGMENT UNDETECTED


SEGMENTATION


DISK


DISK


DISK


ONE SEGMENT DETECTED


Figure 3.4: Illustration of multiple contour interpretations. A partially closed contour could
lead to three detection outcomes depending on a disk diameter.

(SNR) of a specific instrument. It is possible to optimize the threshold value by analyzing

the histogram of labeled region areas as a function of the threshold value because a large

number of small areas (occurring due to speckle noise) disappear at certain range of thresh-

old values. Discontinuity of closed contours caused by the thresholding is later recovered

by disk-based region growing. The choice of disk diameter for connectivity analysis is much

harder to automate because it ties to the medical meaning of each closed or partially closed

contour that would be selected by an expert. I automated the choice of a disk diameter

by imposing lower and upper bounds on the number of segmented regions and evaluating

multiple segmentation outcomes.
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Figure 3.5: 3D region growing for segmentation of a volumetric region using a sphere.

3.5.2 Three-dimensional segmentation

I used a volume growing method that can segment out partially closed volumetric structures

that correspond to vascular volume. These partially closed structures (surface) occur in

imaged specimens due to photo bleaching or loss (possibly lack) of a fluorescent dye. The

motivation for detecting such vascular volume is that they can be used in the absence

of artificially inserted fiduciary markers for computer-assisted 3D volume reconstruction

including mosaicking of image tiles and alignment of multiple cross sections. This volume

growing method can recover vascular volume in such cases when (a) a surface region of

a color homogeneous closed volume is discontinued due to photo-bleaching, (b) a surface

region is partially destroyed during noise thresholding (especially if a high threshold value

has to be applied to remove background clutter), or (c) a surface regions is missing since it

is partially outside of the imaged area of a microscope. Figure 3.5 shows an illustration of

3D segmentation by growing interior volume of a vascular volume using a virtual sphere.

55



3.6 Feature Detection

In this step, I identify the features of segments that are most descriptive but insensitive

to structural morphology changes. The detected features extracted from images/volumes

will be used for computing image registration parameters. Ideally, these descriptive features

include parameters describing each segment shape so that homologous segments can be iden-

tified in a pair of images.

Registration using 2D information: Based on the choice of the image transformation

model for finding segment correspondences that consist of rotation and translation with small

shear, I selected segment centroids and areas as the primary shape features. It is known that

the segment areas, as well as, the mutual distances between any two centroids of segments,

are invariant under rotation and translation. Thus, I utilized the invariance of these two

shape features during feature matching and registration parameter estimation. Both of the

selected segment features were extracted after performing a connectivity analysis by simple

pixel count (areas) and average (centroid) operations.

Registration using 3D information: I computed trajectory of centroids from a series

of optical sections (lateral planes) for each 3D segments. Figure 3.6 illustrates an example

of a pair of sub-volumes after 3D segmentation with centroid trajectory within each volume.

3.7 Results

In this section, I show (a) frame selection results from two sets of CLSM data, (b) perfor-

mance evaluation of image mosaicking in three different automation levels by user study, (c)
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Figure 3.6: An example of a pair of sub-volumes after 3D segmentation.

2D/3D segmentation results, and (d) feature detection results for 2D and 3D cases.

3.7.1 Frame selection

I evaluated two 3D volumes experimentally. One 3D volume was formed from four con-

secutive sub-volumes consisting of 96 image frames, and another one was formed from six

sub-volumes consisting of 48 image frames. The results are shown in Figure 3.7 as a func-

tion of image frames index. These graphs demonstrate the combined entropy and contrast

variations as a function of image frames from all sub-volumes. The frame with maximum

visual saliency score is selected automatically within each sub-volume for alignment. For

example, the frame indices 11 and 28 would be used for alignment of the first two depth

adjacent sub-volumes because they correspond to the maxima in Figure 3.7 (a).

Based on Figure 3.7, one could always choose the middle frame of each physical section

(sub-volume) for image alignment and skip this processing step. From an accuracy view-

point, this approach would lead to a sub-optimal solution with some computational savings.

I discovered that the computational savings are negligible in comparison with all registration

related processing (less than a second per frame in comparison with several hours per frame

for other processing steps). Experimental evaluations of the sub-optimal accuracy loss led to
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Figure 3.7: Evaluation of image frame selection from within each 3D sub-volume to be used
for alignment of the sub-volumes. The graphs show combined visual saliency score as a
function of image frame for two 3D volumes. The frame with maximum visual saliency score
within each sub-volume would be used for alignment.
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the range of normalized correlation coefficients in [0.59, 0.635] by computing the correlation

of the middle frame (sub-optimal solution) with all other 21 image frames inside of one sub-

volume (potentially optimal solutions). Additional evaluations of normalized correlations

for pairs of middle frames led to the range of values in [0.21, 0.27]. Thus, I concluded that

based on the experimental data one would expect relatively considerable inaccuracy due to

a sub-optimal solution. Statistically, the distribution of the introduced inaccuracy would be

skewed toward smaller values and would be data dependent. In my experimental data shown

in Figure 3.7 (b) (altogether 10 sub-volumes), 10% of middle frames coincided with the op-

timal solution and the middle frame was on average 2.5 frames displaced from the optimal

frame. In order to avoid these uncertainties, frame selection step should be performed.

When I investigated tradeoffs between choosing the end frames of two spatially adjacent

sub-volumes (as opposed to selecting the frames closer to the middle frames within each

sub-volume), I discovered that this approach would still demonstrate the tradeoffs between

intensity variations and morphological distortions along z-axis (frame index), and hence

guide me in an optimal frame selection. Figure 3.8 illustrates data that support the frame

selection according to our proposed criteria rather than choosing the end frames. Note that

the index ”21-0” represents a pair of frames with minimal morphological change and maxi-

mal intensity variation. To the right of the x-axis of the graph in Figure 3.8, morphological

change increases, and intensity variation decreased. Based on the result, the similarity (nor-

malized correlation coefficient) loss due to intensity variation (see ”21-0”) is much more

significant than the similarity loss due to morphological distortion (see peak at ”14-7”).

3.7.2 Tile mosaicking

Accuracy evaluation metric for image mosaicking

The proposed accuracy evaluation aims at estimating upper error bounds for automatic,

semi-automatic and manual tile mosaicking techniques. To achieve the aim, I introduced
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Figure 3.8: Evaluation of inter-frame similarity for two spatially adjacent sub-volumes with
22 frames after alignment. The similarity is measured by normalized correlation (vertical
axis). The horizontal axis refers to the pairs of frames that start with the end frames of
sub-volumes (21 − 0 ≡ (Sub-Vol 1, frame 21)−(Sub-Vol 2, frame 0)) and finish with the
middle frames (11 − 10 ≡ (Sub-Vol 1, frame 11)− (Sub-Vol 2, frame 10)) .

three mosaicking methods (registration of x-y image tiles in a single frame of a physical

section). Next, I designed an experimental evaluation methodology that addresses the issues

of (a) defining optimality criteria for assessing registration accuracy, and (b) obtaining the

ground truth (or reference) images, as encountered in real medical registration scenarios.

After conducting experiments with human subjects consisting of experts and novices, I drew

conclusions about the mosaicking methods, and analyzed the driving factors behind the

results.

For an experimental setup, one could carve out several spatially overlapping tiles from one

large image and use the original image as the reference (ground truth) image. However, this

evaluation setup would not simulate the real problem of mosaicking multiple tiles acquired

at different time instances. For example, it would not represent unpredictable intensity

variations due to fluorescent imaging physics. Thus, I chose to establish the ground truth

image and the locations of all n tiles in this image (denoted as T GT in the following way.

First, I took an overview image of a specimen at 20x optical magnification and 3x3 high

resolution image tiles at 63× optical magnification (n = 9). The overview image became the

ground truth image. Second, tile images (63× magnification) were digitally down-sampled
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to match the resolution of the overview image (20x magnification). Third, I found the best

match between a down-sampled tile and the overview image with a template-based search

using a normalized cross correlation metric. Fourth, the location of the best tile match was

re-scaled to the original tile resolution. Fifth, steps one through four were repeated for all

nine tiles to obtain a matrix of tile locations T ∗. Sixth, the matrix T ∗ was normalized with

respect to the tile location in the upper left corner (t1x, t1y) of the final mosaic image. Note

that I used a bi-linear interpolation method for down- and up-sampling processes.

The uncertainty (pixel error distance) caused by the re-sampling (e.g., interpolation)

procedure can be easily computed from the magnification factors. For example, for the re-

sampling factor equal to 63/20 (= 3.15), a down-sampled pixel will have contributions from

an 3.15 by 3.15 pixel neighborhood. Thus, the uncertainty of the down-sampled and re-scaled

pixel is equal to the maximum pixel distance in a 3.15 by 3.15 pixel region (3.04(= 2.15
√

2)

pixels. Note that, geometrically, the maximum distance is a Euclidian distance between the

centers of pixels in a region).

Finally, I denote the normalized matrix as the ground truth matrix T GT of tile locations.

~TGT =





tGT
1x tGT

1y

tGT
2x tGT

2y

. .

tGT
nx tGT

ny





= T ∗ −





t∗1x t∗1y

t∗1x t∗1y

. .

t∗1x t∗1y





, where T ∗ =





t∗1x t∗1y

t∗2x t∗2y

. .

t∗nx t∗ny





(3.4)

Any other result of mosaicking is represented by a matrix of tile locations T ((tix, tiy) ∈ T ),

and compared with TGT . The mosaicking registration error Etranslation is computed as an

average error distance according to the following.

Etranslation =
1

n

n∑

i=1

√
(tGT

ix − tix)2 + (tGT
iy − tiy)2 (3.5)

Note that the smaller the error implies the better mosaicking accuracy.
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The proposed mosaicking evaluation methodology, using (1) the overview image acquired

at low optical magnification as the true reference image and (2) the normalized correlation

based estimation of tile locations T GT , more closely simulates real image tile data than a set

of carved out tiles from one image. Furthermore, the bias of tile locations T GT coming from

normalized correlation based matching can be quantitatively expressed by the correlation

values in the vicinity of the best tile match with the overview image. The final remark is

related to the selection of the error metric Etranslation. Due to the intensity variations of

CLSM images, it is preferred to use a registration accuracy metric based on spatial matches

of salient structures rather than based on pixel intensity matches. The appropriateness of

this metric selection could be demonstrated by taking images of the same specimen multi-

ple times without moving it. If the metric would be based on pixel intensity matches then

the metric would indicate falsely mis-registration in contrary to the metric based on spatial

matches.

Statistical performance evaluation I describe a statistical test method to evaluate

accuracy improvement of the feature-based approach against pixel-based approach. Let

{EP
i } and {EF

i } be two paired sets of N measured error values for the pixel-based method

and the feature-based method respectively obtained with the same data. In our experiments,

the size of the set is relatively large (N = 50 for mosaicking and N = 78 for alignment).

I assume that the paired error values are independent and follow a Gaussian distribution.

The null hypothesis in our tests states that there is no improvement of the feature-based

registration approach in comparison with the pixel-based registration approach. I performed

the Student’s t-test to prove or reject the null hypothesis [51]. I compute ÊP
i = (EP

i − ĒP
i )

and ÊF
i = (EF

i −ĒF
i ), where ĒP

i and ĒF
i are the average errors of each set. Then, I calculated
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the t value for the paired t-test according to the equation below.

t = (ĒP − ĒF )

√
N(N − 1)

∑N
i=1 (ÊP

i − ÊF
i )2

(3.6)

Given t, I obtained the confidence interval (p-value [51]) to prove or reject the null hypothesis

(no improvement) using one-tailed cumulative probability distribution function P (X ≤ t)

with N − 1 degrees of freedom. The results of statistical comparisons are shown in the next

section.

Experimental result for image mosaicking

The overall experiments consist of mosaicking 3x3 image tiles. I report the results obtained

from twenty human subjects (fifteen experts and five novices) who participated in the user

study, and performed manual and semi-automatic image mosaicking. To assess registration

consistency, novices performed registration three times with any given data set. Although

the results from novices may be biased by “a learning effect”, I did not observe it in our

experiments due to the small number of trial repetitions.

Figure 3.9 (a) shows the user interface for selecting matching points in two image tiles.

Users selected one pair of feature points, one from each tile. Figure 3.9 (b) illustrates the

interface for selecting regions that would be used for centroid calculation. In order to con-

struct a mosaicked image, eight pairs of points or regions had to be selected. I used a set of

nine images from a single physical section for mosaicking, and the experimental results are

summarized in Figure 3.10 and Table 3.1, and the t-test result comparing the pixel-based

and feature-based mosaicking is shown in Table 3.2.

The results lead to the following conclusions. First, fully automatic mosaicking using

normalized cross correlation similarity is the fastest method, followed by semi-automatic

(feature-based) and manual mosaicking. Second, manual pixel based image mosaicking is
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Figure 3.9: Software interface for (a) manual mosaicking, and (b) semi-automatic mosaicking
with highlighted regions.
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Figure 3.10: Mosaicking errors for all human subjects performing pixel-based (manual),
feature-based (semi-automated), and intensity-based (fully automated) tile mosaicking.
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Table 3.1: A summary of mosaicking experiments: 3 by 3 tiles with 512 by 512 pixel resolu-
tions. Full automatic methods are performed by the normalized cross-correlation (NC) and
by the normalized mutual information (NMI) on Pentium 4, 3.0 GHz.

Error (pixels)
Pixel-based Feature-based Auto

expert novice expert novice NC NMI
Average 5.72 10.65 4.04 4.22 4.12 4.12

Standard deviation 3.42 11.83 0.32 0.47 0 0
Total average 6.96 4.07 4.12

Total std. deviation 6.82 0.35 0
Upper bound (99.73%) 27.42 5.12 4.12

Time (seconds)
Pixel-based Feature-based Auto

expert novice expert novice NC NMI
Average 211.56 153.47 125.27 101 68 480

Standard deviation 132.32 95.06 56.96 45.66 0 0
Total average 197.03 119.2 274

Total std. deviation 125.88 55.01 0
Upper bound (99.73%) 574.67 284.23 274

Table 3.2: The paired t-test result for errors of the pixel-based and the feature-based methods
in Table reftable-mosaic.

Pixel-based vs. Feature-based
Degrees of freedom 49

t value 3.019
p value 0.998
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the least accurate with the highest standard deviation among all methods. Third, semi-

automatic and fully automatic mosaicking methods are approximately equally accurate.

Fourth, experts using the manual (pixel-based) mosaicking method selected one pair of

points/regions more accurately (small average error) and consistently (small standard devi-

ation) than novices although it took them more time. Fifth, the difference in mosaicking

average errors and their standard deviations between experts and novices using the pixel-

based method disappears when human subjects start using the feature-based mosaicking

method. Sixth, the upper error bound of each mosaicking method can be estimated in pixels

as the average plus three times standard deviation (99.73% confidence interval), which leads

to about 4.12, 5.12 and 27.42 pixel error for the fully automatic, semi-automatic and manual

methods respectively. Seventh, the t-test result in Table 3.2 shows that the null hypothesis

(no improvement) is rejected with 99.8% confidence. Finally, the time-saving for experts

and novices using semi-automatic method with respect to manual method is 41% and 36%

respectively.

Although the intensity-based automatic methods look pretty attractive, note that there

are mosaicking cases when the overlapping area of two adjacent tiles is characterized by ei-

ther a lack of detected vascular features (feature based techniques fail) or significant spatial

intensity heterogeneity (intensity based techniques fail). Figure 3.1 illustrates the former

case. Thus, there is a need to evaluate manual and semi-automated mosaicking techniques

for those cases when the intensity based techniques fail. In addition, it is not always the case

that the fully automatic method will outperform the manual and semi-automatic methods

(see Figure 3.10 and Table 3.1).

3.7.3 Segmentation

Figure 3.11 shows a pair selected frames from adjacent sub-volumes. To demonstrate the reg-

istration performance in Section 4, one image (right) is rotated about 90-degrees in addition
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Figure 3.11: Example images that have to be aligned. Human tonsil tissue stained for
laminin.

to measurement deformation (e.g., translation, rotation, and shear). The images are taken

by CLSM from human tonsil tissue stained by laminin. Green closed contours represent

blood vessels and some of them are partially opened. Figure 3.12 shows the corresponding

2D segmented images using a disk-based region growing method with threshold of 10 (left

image) and 8 (right image), minimum area size of 80, and disk diameter of 3. It detected 28

(left image) and 32 (right image) closed contour regions for feature matching.

Figure 3.13 shows a 3D visualization of a pair of adjacent input sub-volumes that were

used in Figure 3.11. Cylindrical structures are segmented out using sphere-based 3D seg-

mentation method with sphere diameter of 3, threshold of 30, maximum number of voxels in

a volume feature of 50000 (for both left and right sub-volumes) as shown in Figure 3.14. The

visualized sub-volume dimension is 562×552×23(width×height×depth) (the sub-volumes

are cropped by negligible amount in lateral coordinates to match with the image dimension

of the reference sub-volume).
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Figure 3.12: Segmentation of input images shown in Figure 3.11. Segmentation is performed
by thresholding that is followed by connectivity analysis with a disk. The two images
illustrate results obtained with different disk parameters [Left image - T.S. (threshold S) =
10, right image - T.T. (threshold T) = 8, M.R. (minimum size of a region) = 80, and D.D.
(disk diameter) = 3].

 
  


Figure 3.13: A pair of CLSM sub-volumes: (left) sub-volume 1 (upper physical section) and
(right) sub-volume 2 (lower physical section).
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Figure 3.14: Segmented sub-volumes of Figure 3.13.

 
  


Figure 3.15: The centroids are labeled from the segments shown in Figure 3.12.

3.7.4 Feature detection

Based on the segmentation shown in Figure 3.12, I computed a set of centroids as shown in

Figure 3.15. The centroid labels does not necessarily match in the shown pair of images.

Figure 3.16 shows a pair of exaggerated trajectories from the volume segmentation of the

sub-volumes in Figure 3.14. The label does not necessarily matches with matching pairs.

Red line-segments represent centroid locations, and green curve segments represents third

degree polynomial curves by least squares fitting to the centroid trajectories.
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Figure 3.16: A pair of sets of (exaggerated) trajectories from adjacent sub-volumes. Numbers
indicate the label of matching trajectories. Red line segments indicate centroids, and green
curves indicate a polynomial function with degree 3.

3.8 Summary

In this section, I presented methods of sub-volume preprocessing required for automated

3D volume reconstruction process. The pre-processing step consists of sub-volume intensity

analysis, tile mosaicking, segmentation, and feature detection. Frame selection and mosaick-

ing (manual, semi-automated, and fully automated) steps are performed regardless which

registration methods the volume reconstruction uses, e.g., 2D or 3D information. In case of

using 2D information for registration, the selected frame from the sub-volume analysis pro-

cess is further needed through entire registration process, such as 2D segmentation, feature

matching, and intensity-based optimization. Segmentation and feature detection processes

are performed based on the dimensionality of registration method, such as region segmen-

tation followed by centroid computation in 2D case, and the volume segmentation followed

by centroid trajectory computation in 3D case.

In addition, I would like to add a few comments about the performance robustness of

fully automatic and semi-automatic methods. Fully automatic mosaicking method based on
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normalized correlation or normalized mutual information might not achieve the best perfor-

mance when corresponding salient features have spatially mismatched intensity variations.

Semi-automatic method based on region centroids might not be used when closed regions

cannot be detected due to the spatial structure of an imaged specimen or a very low image

quality, for instance, a low signal-to-noise (SNR) ratio and a large amount of intra-region

noise.

In next chapter, I deal with feature matching used for 2D and 3D case in different automa-

tion levels, and matching refinement problem for optimal global transformation parameter

estimation.
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Chapter 4

SUB-VOLUME ALIGNMENT

4.1 Introduction

In this chapter, I describe multiple approaches to sub-volume alignment (registration along

axial direction). The problem consists of feature matching using multiple automation lev-

els, matching refinement based on intensity or morphology (e.g., centroid trajectory), global

transformation estimation, and sub-volume transformation. The input to this process is the

set of frames selected from the sub-volume intensity analysis step and computed features

in the pre-processing step (e.g., centroid coordinates, area, and centroid trajectories). The

output is a set of transformed sub-volumes by an affine transformation. The transformed

sub-volumes are adjoined to reconstruct an entire 3D volume for visualization.

I define the 3D reconstruction problem as a registration problem [97]. The goal of 3D

reconstruction is to form a high-resolution 3D volume with large spatial coverage from a

set of spatial tiles (small spatial coverage and high-resolution 2D images or 3D cross section

volumes). The main challenges of image alignment include the transformation technique

and model selection problems. In the past, the transformation technique based on intensity

correlation has been applied to many medical image modalities [60] other than the fluores-

cent CLSM modality. Nonetheless, applying the same techniques to the image alignment

problem of CLSM images is more difficult due to (1) high computational cost, (2) spatial

intensity heterogeneity, and (3) noise issues as explained below.

First, the computational difficulty arises from a large image size and high degrees of

freedom for complex transformation models. In our case, the computational complexity due
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to a large amount of data (3D stacks with many physical sections to obtain sufficient depth

information) with high spatial resolution (around 2500 by 2500 pixels) should be considered

when applying an affine transformation (6 degree-of-freedom). One could find methods in

the literature that process large data of other imaging modalities by using multi-resolution

(or pyramid) based techniques [60]. However, in the case of CLSM images, the local min-

ima problem is much more severe due to high spatial and depth intensity heterogeneity

(attenuation) [73]. Second, varying signal to noise ratio due to aforementioned intensity het-

erogeneity should be considered. Third, noisy (spurious) features with high intensity values

due to unbound fluorescence have to be handled.

In Section 4.3, I propose feature matching methods in three different automation lev-

els, such as manual (denoted as pixel-based), semi-automated (feature-based), and fully

automated (feature-based) method. One could notice that one major difference between

mosaicking and alignment is the approach to the fully automated method. As discussed

earlier, for affine transformation model, intensity-based method is infeasible due to intensity

heterogeneity and high computational cost. For sub-volume alignment, I used fully auto-

mated feature-based method by solving a variation of the Procrustes problem [24] using

centroid and area of detected segmentations. Suggested manual and semi-automated meth-

ods require human intervention such as pixel or region selection. As well as on-site user

intervention, I present manual and semi-automated method using web services.

The use of proposed web services is motivated by the fact that the problem of 3D medical

volume reconstruction requires significant computer resources and human expertise in med-

ical and computer science areas. Specifically, web services are implemented as an additional

layer to a data flow framework called Data to Knowledge (D2K). In the collaboration be-

tween UIC and NCSA, pre-processed input images at NCSA are made accessible to medical

collaborators for registration. Every time UIC medical collaborators inspected images and

selected corresponding features for registration, the web service at NCSA is contacted and
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the registration processing query is executed using the Image to Knowledge (I2k) library of

registration methods. Co-registered frames are returned for verification by medical collabo-

rators in a new window. I present 3D volume reconstruction problem requirements and the

architecture of the developed prototype system at http://i2k.ncsa.uiuc.edu/MedVolume. I

also explain the tradeoffs of our system design and provide experimental data to support

our system implementation. The prototype system has been used for multiple 3D volume

reconstructions of blood vessels and vasculogenic mimicry patterns in histological sections

of uveal melanoma studied by fluorescent confocal laser scanning microscope.

In Section 4.4, I propose matching refinement processes of optional intensity-based ap-

proach in 2D registration and trajectory fusion approach in 3D registration. The common

goal of two approaches is to compute an optimal global affine transformation using differ-

ent registration quality evaluations. First, the intensity-based approach is aimed to achieve

higher image intensity similarity (e.g., normalized cross correlation), and the problem is

viewed as a search problem for an optimal transformation. Second, the trajectory fusion

approach is to optimize global transformation which preserves morphological smoothness

of medical structures (called features, e.g., blood vessels) inside of the reconstructed 3D

volume.

4.2 Related Work

There exist many techniques for 3D volume reconstruction and many commercial tools

from multiple vendors that could be used for image registration [162, 64, 16, 22, 50, 143].

An overview of 3D registration tools for MRI, CT, confocal, and serial-section data for

medical/life-sciences imaging is provided at the Stanford 1 or at the NIH web sites 2. One

1Stanford web page with references to 3D volume reconstruction software packages.
http://biocomp.stanford.edu/3dreconstruction/refs/index.html
and http://biocomp.stanford.edu/3dreconstruction/software/

2NIH website.
http://www.mwrn.com/guide/image/analysis.htm
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could list a few software tools that have been developed specifically for CLSM, for exam-

ple, 3D-Doctor, Science GL, MicroVoxel, 3DVIEWNIX or Analyze. Most of these tools use

manual registration methods, and users have to make manual selections before any partic-

ular software reports registration error associated with registered images. Some software

packages include semi-automatic or fully automatic 3D volume reconstruction for specific

imaging modalities under the assumption that visually salient markers have been inserted

artificially in imaged specimens. For instance, 3D-Doctor provides a maximum likelihood

algorithm for aligning slices under such assumption.

The problems of 3D volume reconstruction and medical cross section registration have

been approached by an overwhelming number of researchers over the past several decades

[60, 64, 104, 109, 118, 145, 157] and remain still an open problem. There have been several

survey papers about registration approaches that include selection of registration variables

based on user decisions [16, 97, 162]. In section 2.4, I specifically focused on optimal selec-

tions of registration variables that are inherent parts of 3D volume reconstruction process.

The 3D volume reconstruction problem is defined as a registration problem without fiduciary

markers [97]. The goal of 3D reconstruction is to form a high-resolution 3D volume with

large spatial coverage from a set of spatial tiles (small spatial coverage and high-resolution

2D images or 3D cross section volumes).

Regarding geographically distributed alignment process, there exist commercial software

packages that address the problems of image access and navigation with other than web ser-

vice approaches. In the medical domain, these solutions are known as “Virtual Microscopes”

and primarily owned by companies (like Bacus Laboratories, Inc. and Aperio Technologies).

In the GIS domain, the solution for accessing all IKONOS aerial photos before 9/11 was de-

veloped by Microsoft (navigation capability without annotation or computation capability).

Among the most recent solutions using web services, I should mention a new suite of

web service tools to facilitate multi-sensor investigations in Earth System Science that is

sponsored by NASA [159], and the ArcWeb tools which are web services implemented for
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GIS data operations. The tools for NASA are developed based on a framework using grid

workflows (known as SciFlo) [154]. Other workflow frameworks, like Kepler [3, 96], have not

been used for applications using web services. The ArcWeb services are proprietary, and

focus primarily on (a) accessing images with the size in the terabytes, and (b) reducing data

storage and maintenance costs.

In contrast to the previous work, the presented work for geographically distributed align-

ment process is based on the data flow framework called D2K [149]. D2K is a visual pro-

gramming environment and data flow execution engine developed at NCSA for data mining

applications (prediction, discovery, and anomaly detection with data management and in-

formation visualization). The underlying 3D volume reconstruction algorithms came from

a library of image analysis tools called I2K [8], also developed at NCSA. Our prototype

system has been used in practice for 3D reconstruction of uveal melanoma tissues based on

the NIH-funded collaboration between UIC and NCSA [76].

The previous methods developed for the problem of pair-wise sub-volume alignment can

be classified as intensity based methods (e.g., normalized cross correlation or normalized

mutual information) or morphological feature-based methods (e.g., shape matching, semi-

automated method) [9]. Intensity-based methods are typically performed by selecting or

generating a pair of representative images from adjacent sub-volumes [85], determining a

global transformation parameters by minimizing a similarity metric for all possible transfor-

mations, and applying the computed global transformation to the sub-volume. Intuitively,

using the intensity-based approach, one could select a pair of end frames that are near the

boundary of adjacent physical sections to minimize morphological distortion of the structural

changes. However, it is well known that due to spatial intensity heterogeneity of end frames

in CLSM sub-volumes, correlation techniques would result in very low similarity measures,

which leads to undesirable sensitivity to noise and inaccurate alignments [11],[73]. To over-

come the problems with end frames, alternative approaches for frame selection have been

suggested that would select the highest contrast images [85, 88] or generate a representative
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image based on sub-volume analysis, e.g., a projection [20]. Although the intensity based

methods are feasible in some cases, it should be noted that they are computationally ex-

pensive due to a large search space of transformation parameters. If the search is limited

then the alignment accuracy might be compromised and could result in discontinuities along

z-axis (depth).

Since partial 3D information about sub-volumes are available in CLSM data, e.g., phys-

ical section with limited thickness, we approach the registration problem by utilizing the

3D information from each sub-volumes such as trajectories of volumetric segment centroids.

Trajectory descriptors are mainly used in a motion tracking problem in computer vision

[41, 150]. It is typically modeled as 2+t dimension, i.e., 3-dimension with replacing z with t

[74] in video frame sequences. The trajectory fusion is performed by estimating spatial align-

ment and temporal synchronization (temporal alignment) between the two sequences, using

all available spatio-temporal information [158]. This work is related to trajectory tracking

problem in terms of fusing trajectory segments into one trajectory [139]. However, the goal

of the trajectory fusion in 3D medical volume reconstruction is to optimize visual registra-

tion accuracy by estimating a global transformation as opposed to individually correlating

each pairs of trajectory segments.

4.3 Feature Matching

The feature matching problem in this section is reduced to a problem of establishing cor-

respondences of pixel locations of matching pairs in a pair of images from depth adjacent

sub-volumes. In this section, I provide feature matching methods in three different lev-

els of automation such as manual, semi-automated, and fully-automated method. Manual

and semi-automated methods are implemented and studied by (1) on-site experiment, e.g.,

software packaging for users and (2) off-site experiment, e.g., geographically distributed

alignment process (web service). The fully-automated method is performed by solving a
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variation of the Procrustes problem to establish the feature correspondences [24].

4.3.1 Manual alignment approach using pixel selection

Manual alignment method is one of the most popular method and still being used in many

clinical applications. The typical process of the manual alignment consists of (1) displaying

pairs of images to be registered in GUI (Graphic User Interface), (2) having a user select sets

of matching pairs of points, and (3) computing a global transformation parameters based on

the user pixel selection. Another possible scenario may be overlaying a pair of images and

adjusting transformation manually while visually inspecting the images. The main advan-

tages of the manual alignment method include (1) low software implementation cost (simple

software design), (2) flexibility of input data set (e.g., multi-modal alignment, independence

of image contents, and (3) possible integration (exploitation) of user expertise. However,

the alignment accuracy (quality) may significantly depend on user expertise, experiment

condition, and user interface (e.g., HCI). In this work, I present a manual alignment method

by pixel selection using a same user-interface in image mosaicking in Section 3.4, and use

the manual alignment method as a benchmark for performance evaluation when comparing

with semi-automated and fully automated approach.

4.3.2 Semi-automated alignment approach using region centroids

The registration was conducted by semi-automated, i.e., region centroid-based, alignment.

To support the claims about the spatial intensity heterogeneity and the presence of noise,

I evaluated an intensity-based similarity metric (normalized correlation) for pairs of im-

ages from two registered CLSM sub-volumes. The low magnitudes of these similarity values

(approximately in the interval [0.325, 0.365]) proved that the intensity-based automatic

alignment would not be robust and would very frequently fail. As a consequence, I did not

apply the correlation based technique developed for image mosaicking to the image align-
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Figure 4.1: Morphology quantification in a CLSM stack: x-axis represents a frame index
(along depth) which is compared with the first frame.

ment problem.

Furthermore, the problem of image alignment (or registration along z-axis) is much

harder to automate than the problem of mosaicking because images of cross sections are

much less similar than images of spatial tiles due to the process of cross section specimen

preparation (sample warping due to slicing), intensity variation (confocal imaging), and

structural changes (bifurcating structures). In Figure 4.1, I quantified the morphological

changes along depth in a single physical cross section (sub-volume) by computing normal-

ized cross-correlation coefficient between the first and other image frames.

The manual and semi-automatic methods for image alignment differ from the methods

described for image mosaicking by the need to select at least three pairs of corresponding

registration points as opposed to one pair of points sufficient in the case of image mosaicking.

Feature matching using semi-automated method is performed by (1) displaying a pair of im-

ages that are selected from depth adjacent sub-volumes, (2) computing centroids of closed

pre-segmented regions on user selection, and (3) establishing coordinate correspondence of

selected centroids.
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4.3.3 Fully-automated alignment approach

The homology of a pair of features is closely related to an image transformation model usually

defined a priori. It is selected based on expected deformations during specimen preparation

and image acquisition. Depending on a selected transformation, one finds representative

invariant features under the selected transformation (e.g., area remains invariant under the

rigid transformation). I used a combination of rigid transformation model (translation and

rotation; 3 parameters) and an affine transformation model (translation, rotation, scale and

shear; 6 parameters) for the automated feature matching problem. I investigated methods

for establishing feature correspondences and their assumptions about registration transfor-

mations (as known as the Procrustes problem).

I introduce a method to establish a correspondence between two sets of segment fea-

tures. The problem is a variation of the Procrustes problem [24], where one estimates

transformation parameters based on centroid and area characteristics of segments (segment

feature). The developed solution to the correspondence problem consisted of two phases.

First, a coarse rigid transformation is estimated by (a) matching Euclidian distances be-

tween pairs of centroids (denoted as distance-based matching) and (b) comparing segment

areas. Although this type of correspondence estimation is robust to partial mismatches, it

is insensitive to angular differences (see Figure 4.2). Second, the set T (see Figure 4.3) is

rotated and translated to the coordinate system of the set S according to the parameters

computed in the first phase. Finally, I found correspondences by matching vector distances,

as opposed to Euclidean distances used in the first phase (denoted as vector-based match-

ing). This computation is appropriate for correcting wrong correspondences from the first

phase, but would not be robust on its own for highly rotated feature sets.

The developed solution to the correspondence is presented here. Let Sa(a = 1, ..., NS)

and Tb(b = 1, .., NT ) be a pair of extracted sets of shape features from selected image frames

IS
a and IT

b such as Si = {~cS
i , aS

i } and Tj = {~cT
j , aT

j } , where ~cΩ
k are the 2D centroid locations
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Figure 4.2: Illustrations of the case when distance-based matching leads to an erroneous
match of the segments labeled as 3 (left) and as 4 (right).

and aΩ
k are the area values. The number of features in each image is NΩ, Ω = {S, T}, and

NS is not necessarily the equals to NT . An illustration of the correspondence problem is

presented in Figure 4.3 for NS = 3 and NT = 5.

In the first phase, the computation consists of (1) calculating a matrix of mutual dis-

tances dS
iu and dT

jv (i, u = 1, ..., NS and j, v = 1, ..., NT ) for each set of feature centroids

(e.g., dotted lines in Figure 4.3), (2) finding a set of matching pairs of segments Mk, and (3)

sorting the matched segments based on the residuals of all matched centroids with respect

to the estimated rigid transformation. To find a matching pair of segments, I first select a

pair of segments Si and Tj denoted by pivot segments, and introduce three similarity mea-

sures, such as (a) the area ratio Aij(u, v), (b) the difference of Euclidian distances (residual)

Dij(u, v), and (c) the number of matching segments Qij.

Pivoted by segments (Si, Tj), I first compute the area ratio as for matching segments

Aij(u, v) =
∣∣aS

u/aT
v − 1

∣∣. Next, the difference of Euclidian distance is computed as Dij(u, v) =
∣∣dS

iu − dT
jv

∣∣. Finally, the number of matching pairs Qij is calculated by counting the number

of pairs that satisfies both Dij(u, v) < δ1 and Aij(u, v) < ε1, where the value of δ1 is the

dissimilarity upper bound of a pair of distances, and ε1 is the divergence upper bound of a

ratio of two segment areas from one. I not only maximize Qij but also remove the matches

that do not satisfy the inequality
Qij

Min(NS ,NT )
≥ λ1, where λ1 ∈ [0, 1] is the lower bound of
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Figure 4.3: Illustration of the correspondence problem for two sets of features Si and Tj with
unequal number of features NS = 3(left) and NT = 5(right). Segments are shown as disks
characterized by their index i, area aS

i and centroid location ~cS
i . Dashed lines represent the

Euclidean distances between any two centroid locations.

normalized number of matches for a single pivot segment. Figure 4.4 shows the description

of the defined similarity metrics.

To find a final match Mk, we maximize a score function f(·) by incorporating three

similarity metrics as follows:

Mk =

{
(i, j)

∣∣∣∣(i, j) = arg max
i,j

{
f

(
Qij,

1

D̄ij

, Āij

)}}
(4.1)

where D̄ij and Āij are average error distance and area ratio pivoted by (Si, Tj) for all match-

ing pairs of (u, v), 0 ≤ k ≤ NST , and NST is the number of matching pairs of segments

(pivots). The function f(·) may be defined as an energy function or, more simply, a weighted

product of all components. In implementation, I used a weighted product of each component

with normalization.

In the second phase, I first rotated the features in the set Tb(b = 1, .., NT ) to match

with the coordinate system of the set Sa(a = 1, ..., NS) according to the parameters which is

computed by selecting two best matches in the first phase. Next, vector-based matching is

performed in a similar way as distance-based matching in the first phase. The major differ-
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Figure 4.4: Illustration of distance-based matching for two pivot segments Si = {~cS
i , aS

i } and
Tj = {~cT

j , aT
j }. In order to find the best match, distance and area ratio of pairs of segments

are compared to satisfy Dij(u, v) < δ1 and Aij(u, v) < ε1.

ence is in replacing the Euclidian distance metric with the vector distance metric D∗

ij(u, v)

defined in following equation:

D
∗

ij(u, v) =
∥∥(~cS

i − ~cS
u) − (~cT

j − ~cT
v )

∥∥ (4.2)

The vector distance incorporates both Euclidian distance and angular constrains about

a pivot segment. Therefore, the matching performance is greatly increased comparing with

the first phase in terms of accuracy (mis-match) and the number of matching segments. The

second phase contains the same three parameters as the first phase, and we denoted them

as ε2, δ2 and λ2. In almost all experimental cases, we have set ε1 = ε2, δ1 = δ2 and λ1 = λ2.

4.3.4 Geographically distributed alignment process

The problem of 3D medical volume reconstruction requires significant computer resources

and human expertise in medical and computer science areas. Web services can be viewed as

the mechanism for establishing a collaborative environment between medical and computer

science collaborators and combining their geographically distributed expertise. Web services
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also allow us to quickly prototype an application and send a URL to UIC to obtain fast user

feedback. In our collaborative environment, the data of 3D cross sections are large in size,

and the registration computation requirements are significant. Therefore, the above benefits

of web services outweigh the timing overhead of web services.

In a collaborative environment with medical and computer science collaborators, the goal

is to reconstruct 3D medical volume from high resolution microscopy images of several cross

sections. High resolution mosaic images of cross sections are formed from a large set of

tiles, and then the mosaic images are aligned to construct a 3D volume. From a medical

collaborator viewpoint, 3D volume reconstruction requires (a) sophisticated 3D volume re-

construction algorithms and (b) computation and storage beyond the capability of a desktop

computer, i.e., computer science expertise and resources. From a computer science collabo-

rator viewpoint, 3D volume reconstruction requires selecting pairs of matching features for

cross section alignment, i.e., medical expertise. Thus, there is need to develop a cyber-

infrastructure environment where the computational resources and the expertise of remotely

located medical and computer science collaborators can be integrated.

Application scenario

I address the problem of 3D volume reconstruction in a collaborative environment by using

web services. Our prototype system, shown in Figure 4.5, enables medical and computer

science researchers to solve 3D volume reconstruction problems using web services.

The developed solution consists of the following workflow. First, a medical collaborator,

e.g., from UIC, acquires images and sends data to his or her computer science collaborator.

It is also possible that the medical collaborator uploads the data assuming a high band-

width connection. Second, a computer program automatically mosaics image tiles, selects

the most salient frame from each sub-volume, segments the selected frames and pre-computes

centroids of all segments. The pre-processed images and centroid information are packaged
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Figure 4.5: An overview of the current application scenario.

for web access. Third, the medical collaborator will be notified about the URL designed

for accessing and navigating the image data, as well as for selecting registration points and

visualizing registration results.

The medical collaborator selects matching features for cross section alignment by us-

ing standard human computer interfaces (HCI), and our developed image navigation tools

[85, 88]. The points are saved at NCSA for use later when the final 3D volume is recon-

structed. Once the medical collaborated has selected their points a query is send from UIC

to NCSA to request registration computation. After the computation is completed, the re-

sults can be previewed by the medical collaborator. The preview shows how well the image

alignment was done. If the medical collaborator is not satisfied with the image, registration

they can select more points or modify the already selected points. In the aforementioned

workflow, all operations that require intensive computation are performed at NCSA (com-

puter resource location), while all operations that require medical domain knowledge (image

acquisition, registration point selection, and volume inspection) are performed at UIC (do-
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Figure 4.6: The overall architecture of the proposed system.

main expertise location).

System design using web services

The overall architecture of the proposed system is illustrated in Figure 4.6. It is assumed

that (a) all connections inside of NCSA are high speed, and (b) there might be additional

high speed connections between the storage machines and the NCSA supercomputer. A user

(a medical expert) will be able to interact with the system if they have a low bandwidth

connection to the Internet. If the image size is larger than user’s memory or screen size

then the image access would be enabled by (a) creating a multi-resolution image pyramid,

(b) tiling images at multiple resolutions, and (c) storing pyramid and tile information in a

database. The current implementation assumes that the two image frames to be registered

do not exceed available memory of the medical expert’s desktop.

The problem of image navigation is solved by (a) selecting and displaying image sub-

areas at a chosen resolution, (b) panning through spatially large images using vertical and

horizontal slider bars, and (c) selecting sub-set of bands to display to original data, pre-

processed data (segmentation) and registered data. I should note that in our architecture,
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the user interface was implemented using Java applets. The reason for choosing Java applets

comes from the fact that web services have been designed for web-based software interop-

erability but not for image visualization and data interaction purposes. The additional

problem of registration feature selection is approached by providing tools for either pixel

selection or region selection that is converted to a region centroid. The problem of intensive

computation and extensive storage is tackled by (a) preparing a set of processing algorithms

accessible by web services, and (b) using storage and computational resources at NCSA.

The proposed approach is based on the storage-computation paradigm, where a user is

running only a ”thin” client applet with small storage-computation resources and all stor-

age demanding and computationally intensive operations are performed at NCSA. If a user

would like to perform all operations at his/her desktop then he/she could install the entire

system locally on his/her machine. We have not pursued the paradigm where data sets

would be transferred to a local machine and computationally intensive processing of large

size image data would be performed on a local machine.

Tradeoffs of System Design: When designing the prototype we tried to optimize the

system so that an end user (the medical expert) would have a responsive system that would

show the most up-to-date information with a limited amount of resources used. We con-

sidered the following four tradeoffs: image data transfer, image segmentation computation,

image compression, and image transformation.

• Image data transfer: Image transfer can be executed as a transmission of the full size

image vs. the use of image pyramids [128] [19], in which the system would load the

image as needed, for example, when a user zoomed in/out of the image and panned

around the image. In general, medical images can be large in size. In our test case,

we worked with images that are approximately 1300 x 2700 pixels, but could poten-
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tially be larger. Using image pyramids will reduce the initial transfer of data but will

continuously download data of the image tiles.

• Image segmentation computation: Segmentation of the input images can be performed

on a server side or on a client side. I segment the input images in order to improve

registration accuracy by replacing a pixel location with a more reliable region centroid

location. The segmentation could be performed before a user selects a region (seg-

mentation results have to be transferred) or after a user chooses a location to segment

locally (computation has to occur on a client side). Segmentation on the client side

is a CPU intensive task. Segmentation on the server will reduce the client CPU time

but will increase the image size that needs to be transferred.

• Image compression: Medical image data can be transferred compressed or uncom-

pressed. Transferring compressed input images will result in smaller data transfer,

but will require some client CPU time to decompress the images. Transferring un-

compressed images will increase the data transfer requirements. In our prototype,

compressed images led to a size reduction from 15.3Mb to 2.27Mb.

• Image transformation: Computation of image transformation parameters and the

transformed images can occur on a client side or on a server side. Once the expert

has selected at least three points or regions in each image, we can calculate the image

transformation parameters for an affine transformation and transform one image into

the coordinate system of the other image. If the computation is performed on a client

side, then there would be less network traffic but higher demands on the CPU usage

on the client side. If it is performed on a server side, then there would be less CPU

usage on a client side but more network traffic to transfer transformed image data.

In our application scenario, the objective was to create a prototype that would be very

responsive to a medical expert, and it would not require significant computational resources

on a client side. Thus, we tried to minimize the computer requirements for a medical expert
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Table 4.1: Tradeoffs considered during a prototype system design using web services for
3D volume reconstruction. C refers to a constant, + indicates increase and - is decrease.
Multiple + or - symbols indicate the magnitude of the value specified in each column.

Client CPU Client RAM Bandwidth Number of Queries
Image pyramid C – ++ +

Client does segmentation +++ - - C
Compression + + — C

Transformation on client side +++ + - -

and leverage the virtually unlimited resources of NCSA. Table 4.1 lists the tradeoffs we

have considered during the system design. The tradeoff considerations revolved around the

following metrics: (1) CPU time on a client side, (2) RAM on a client side, (3) bandwidth for

image transmission, and (4) an overhead associated with number of queries. According to

Table 4.1, we chose the options that would limit the resources at the client (UIC) side. Our

final choices were (1) to transfer full images, (2) to perform segmentation on a server side,

(3) to use image compression before sending data, and (4) to compute image transformation

parameters and transformed images on a server side. The images used in our prototype were

small enough in size to fit into RAM memory of a standard desktop computer, and hence

we decided not to use the image pyramids.

Prototype Solution The prototype solution is available in our web site3. I have tested

the prototype with the Microsoft Internet Explorer 6.0 using the Sun Java Runtime Envi-

ronment (JRE) 1.4.2 browser plugin. The left lower corner of the browser conveys messages

about the execution steps, e.g., Applet ncsa.uic.RegistrationApplet started. A user can se-

lect image frames to register using the drop down menu with image names. Selected images

are compressed at NCSA site, transferred to a client site, decompressed and displayed in the

image panels (see Figure 4.7).

After selecting at least three pairs of matching points/segments, the compute button is

3http://i2k.ncsa.uiuc.edu/MedVolume/
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Figure 4.7: Image selection menu.

enabled and the D2K Web Service can be contacted. If an image panel is in the point selec-

tion mode then the left mouse click will define the pixel location to be used for registration.

If an image panel is in the segment selection mode then the left mouse click will be replaced

with the centroid location of the segment that contains the mouse click location. Selection

of registration points using the centroid feature approach is illustrated in Figure 4.8.

After launching web services by pressing the button ”Compute”, a new Java window

labeled ”Executing Job” will appear containing information about the compute job while

the affine transformation parameters are computed. When the job is completed, the button

”View Results” becomes active and the results can be visualized on the client side as it shown

in Figure 4.9. The visualization will contain a seven band image that was sub-sampled in

order to decrease the file size. The seven band image contains the original left image bands,

the transformed right image bands, and one black band for visualization purposes.

If the registration accuracy is satisfactory to the medical collaborators then they record

the job ID number displayed in the top section of the screen. This ID number allows com-

puter scientists at NCSA to retrieve the points associated with the correct registration session

and complete the 3D volume reconstruction. Based on the set of points selected by medical
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Figure 4.8: Selection of registration points using the centroid feature approach. Note that
sub-areas the large images in Figure 4.7 are shown. (”+” marks represents the region
centroids)

 


Figure 4.9: Job execution window after pressing the button ”View Result”.
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experts and saved at NCSA, multiple confocal laser scanning microscope sub-volume are

transformed into a reference coordinate system at NCSA and the 3D volume reconstruction

results are posted for downloading at an ftp site or a web site.

4.4 Matching Refinements

In this section, I introduce the processes to enhance the global transformation accuracy

using intensity of global images and morphology of detected features. First, an optional

intensity-based optimization can be performed to the results from alignment method using

2D information (e.g., frame selection). As discussed earlier, the intensity-based method can

only be performed as an optimization step with, at least coarsely, known transformation

due to (a) its registration abnormality from local minima caused by intensity heterogeneity,

and (b) extremely high computation cost for affine transformation model. I propose an

intensity-based optimization that adjusts pixel correspondence of selected pairs of locations

in limited local neighborhood area. Although the matching refinement process is defined as

an optional optimization process in 2D registration, it is a necessary step when performing

3D registration. After establishing correspondence, the alignment parameters (e.g., pixel

coordinate correlation) are modified based on structural changes of cylindrical features (e.g.,

3D trajectories). The main goal of the trajectory-based refinement is to preserve the smooth

connectivity of morphological structures.

4.4.1 Optional intensity-based optimization for 2D alignment

In this step, there is an option to accommodate a typical visual alignment by using the

normalized correlation approach [25]. The feature-based alignment performed so far could

be refined based on intensity information the same way as a human would incorporate

morphology and intensity cues during alignment. The intensity-based optional refinement
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can be performed by following:

1. Select three pairs of matching coordinates (x1, y1), (x2, y2), and (x3, y3) from the trans-

forming image (e.g., right image in Figure 4.16) based on the compactness measure in

Section 4.5.

2. Define neighborhood adjustment vectors (u1, v1), (u2, v2), and (u3, v3). For example,

(uk, vk) = ([−M/2, +M/2], [−M/2, +M/2]), where M is the neighborhood window

size, and k = [1, 3].

3. Adjust three selected coordinates (x1, y1), (x2, y2), and (x3, y3) by adding (u1, v1), (u2, v2),

and (u3, v3).

4. Compute affine transformation parameters based on adjusted coordinates (x1+u1, y1+

v1), (x2 + u2, y2 + v2), and (x3 + u3, y3 + v3).

5. Transform the image chosen in step 1 based on the affine transformation from step 4.

6. Compute the normalized cross correlation coefficient between target image and trans-

formed image in step 5.

7. Perform step 3-6 to find the optimal affine transformation by adjustment vectors

(u1, v1), (u2, v2), and (u3, v3) that maximizes the normalized cross correlation coeffi-

cient.

8. Output the optimal affine transformation.

This process is very computationally expensive with the computational complexity of

O(image size × complexity of normalized correlation × M6), where M × M is the size of

neighborhood. One would select only a small spatial neighborhood of the three points to

refine their locations based on the highest correlation value among all possible perturbations

of point locations. In practice, the size of the point neighborhood determines the importance

assigned to morphology and intensity information during the alignment.
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4.4.2 Trajectory fusion for 3D alignment

In this section, I propose a trajectory-based sub-volume refinement method using trajectory

fusion objectives, such as minimum discontinuity across adjacent sub-volumes and minimum

residual of a polynomial fit to the corresponding trajectory points from adjacent sub-volumes.

I approach the refinement problem by learning morphological characteristics (centroid tra-

jectories) of structures inside of each CLSM sub-volume first, and then aligning sub-volumes

by fusing the structures using their characteristics. The entire alignment process using 3D

information is described in the following steps (shown in Figure 4.10):

1. Segment out salient medical structures in each sub-volume, e.g., cylindrical structures

(3D segmentation).

2. Establish correspondences between structures from adjacent sub-volumes (feature match-

ing).

3. Compute 2D centroids of the segmented structures in each frame (lateral plane) to

obtain a discrete set of points from a 3D trajectory for each medical structure within

a sub-volume, and use a polynomial model to estimate 3D trajectories from sets of

points (trajectory computation).

4. Fuse a pair of corresponding medical structures by combining their 3D trajectories

(trajectory fusion).

5. Compute a global 3D volume by transforming all sub-volumes based on the set of affine

transformations derived from fused structures.

Fusing corresponding sets of trajectory points

The goal of this computation is (a) to compute volumetric segment trajectory points by

estimating 2D centroids in each 2D frame of a sub-volume, and (b) to determine pairs of
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Figure 4.10: Overview of the trajectory-based alignment.

alignment control points from adjacent sub-volumes by fusing corresponding sets of trajec-

tory points.

I define a set of 3D trajectory points derived for the i-th volumetric segment in the k-

th sub-volume as tki = {(x1, y1, z1), (x2, y2, z2), ..., (xm, ym, zm)}, where m is the number of

frames (depth) in the sub-volume k. The lateral coordinate (x, y) is a centroid location in

a frame, and the z coordinate represents the depth (frame index normalized with respect to

lateral pixel coordinate system) in a volumetric segment.

This task is achieved by performing trajectory fusion under a set of optimization ob-

jectives. The goal of trajectory fusion is to determine pairs of adjusted control points to

estimate the most accurate global transformation α : R2 → R2 applied to lateral planes

(frames) of sub-volumes. First, given a set of matching pairs of depth-adjacent trajectories

tki and tk+1
i ( i ∈ detected features), I compute t∗k+1

i = {(x1 + ui, y1 + vi, z1), (x2 + ui, y2 +

vi, z2), ..., (xm + ui, ym + vi, zm)} by trajectory fusion methods. Then, t∗k+1
i is considered

as a set of modified (translated in lateral plane) trajectories that best fuse (connect) the

corresponding features in tki . Next, I compute the global affine transformation α by using
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all features based on a least-squares fit defined as follows:

α(·) = arg min
α(·)

(

n∑

i=1

[t∗k+1
i − α(tk+1

i )]2) (4.3)

where n is the number of matching volume features. Finally, I transform a set of images

(frame) in the sub-volume k + 1 by the estimated α to create the final aligned sub-volume.

I propose two approaches for trajectory fusion denoted as fusion by extrapolation and

by polynomial model fitting in followings:

(a) Fusion by extrapolation: The trajectory fusion by extrapolation is inspired by

maximizing connectivity of matching trajectories. Assuming that there are some gaps be-

tween adjacent sub-volumes, I extrapolate a pair of points (xk
m+1, y

k
m+1, z

k
m+1) ∈ tki and

(xk+1
0 , yk+1

0 , zk+1
0 ) ∈ tk+1

i where zk
m < zk

m+1 = zk+1
0 < zk+1

1 . Then, I compute the translational

offset (ui, vi) of feature i as following:

(ui, vi) = (xk+1
0 − xk

m+1, y
k+1
0 − yk

m+1) (4.4)

To generate the pair of extrapolated points (xk
m+1, y

k
m+1, z

k
m+1) and (xk+1

0 , yk+1
0 , zk+1

0 ), I

used different methods such as an end-point duplication method and a polynomial fitting

method with three different degrees. First, the end-point duplication is performed by repli-

cating (x, y) coordinate of the adjacent end trajectory points such as followings:

(xk
m+1, y

k
m+1, z

k
m+1) = (xk

m, yk
m, zk

m + ∆gap) (4.5)

(xk+1
0 , yk+1

0 , zk+1
0 ) = (xk+1

1 , yk+1
1 , zk+1

1 − ∆gap)

An example of trajectory fusion by end-point duplication is illustrated in Figure 4.11.

Second, the polynomial-based extrapolation is done by estimating degree γ polynomial

functions f
k(γ)
i and f

k+1(γ)
i based on tki and tk+1

i . To compute a 3D polynomial curve, I
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Figure 4.11: Trajectory fusion by connecting end points

estimate a function f
k(γ)
i as followings:

f
k(γ)
ix (z) = a0 + a1z + ... + aγz

γ (4.6)

f
k(γ)
iy (z) = b0 + b1z + ... + bγz

γ

where





m
∑m

j=1 zj · · ·
∑m

j=1 zγ
j

∑m
j=1 zj

∑m
j=1 z2

j · · · ∑m
j=1 zγ+1

j

...
...

. . .
...

∑m

j=1 zγ
j

∑m

j=1 zγ+1
j · · ·

∑m

j=1 z2γ
j









a0 b0

a1 b1

...
...

aγ bγ





=





∑m
j=1 xj

∑m
j=1 yj

∑m
j=1 zjxj

∑m
j=1 zjyj

...
...

∑m

j=1 zγ
j xj

∑m

j=1 zγ
j yj





. Next,

a pair of extrapolated points is generated as followings:

(xk
m+1, y

k
m+1, z

k
m+1) = (f

k(γ)
ix (zk

m + ∆gap), f
k(γ)
iy (zk

m + ∆gap), z
k
m + ∆gap) (4.7)

(xk+1
0 , yk+1

0 , zk+1
0 ) = (f

k+1(γ)
ix (zk+1

1 − ∆gap), f
k+1(γ)
iy (zk+1

1 − ∆gap), z
k+1
1 − ∆gap)

(b) Fusion by model fitting: The assumption behind the fusion by model fitting is

that relatively short trajectory of a blood vessel follows a polynomial curve with degree of

less than three (cubic). Although the exact model of the trajectories cannot be defined, I

show that maximum three degrees of polynomial fit to the real data quite well based on the

experimental results.
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Figure 4.12: Trajectory fusion by residual minimization of a fitted model.

First, I define r(γ)(tki ) as a residual after fitting γ-degree polynomial function f
k(γ)
i to tki

as following:

r(γ)(tki ) = (r(γ)
x (tki ) + r(γ)

y (tki ))/2 (4.8)

where r
(γ)
x (tki ) =

√
1
m

m∑
j=0

[xij − f
k(γ)
ix (zi)]2 and r

(γ)
y (tki ) =

√
1
m

m∑
j=0

[yij − f
k(γ)
iy (zi)]2.

To compute the residual of fused trajectory from a pair of trajectories, I introduce a

binary operator ⊕∆k
which merges a pair of trajectories between the sub-volume k and k+1

with a physical gap ∆k, e.g., missing frames. ∆k is assumed to be a constant for all sub-

volumes (typically no more than 3 frame length). Then residual of the fused trajectory can

be computed by r(γ)(tki ⊕∆k
tk+1
i ) .

Next, for each pair of matching trajectories i, I search the translational offset (ui, vi) for

t∗k+1
i by minimizing the residual r(γ)(tki ⊕∆k

tk+1
i ) as following:

(ui, vi) = arg min
(ui,vi)∈neighborhood

(r(γ)(tki ⊕∆k
t∗k+1
i )) (4.9)

An example of trajectory fusion by residual minimization is shown in Figure 4.12.
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4.5 Global Transformation Estimation and

Sub-volume Transformation

Rigid transformation with only translation and rotation has been one of the most popular

lower order transformation models designed for rigid structures such as bones. However,

in cellular imaging, higher order (elastic) model or local transformation are preferred to

achieve smooth transition of image structures across slides. However, the difficulty with

higher order models is (a) in robust parameter estimation due to intensity variation (noise)

and deformation exceeding the order of the chosen model, or (b) in bifurcation (appearing

and disappearing structures). Although non-rigid optimization can be applied for only local

features after a global alignment, I limited our transformation model as an affine because

the transformations using higher order models could lead to erroneous alignment due to

the well-known leaning tower problem [104]. As a result, it could ultimately distort the

3D anatomical structures (features) by matching accurately small regions while significantly

distorting other regions.

Considering the medical specimens of my interest, I chose an affine transformation for

modeling cross section distortions and expected to detect only a small amount of scale and

shear deformations. In this case, the paraffin-embedded tonsil tissue represents a non-rigid

structure and has to include deformation like shear due to tissue slicing. The use of affine

model for image transformation accommodates small amounts of scale and shear that are

inevitable during material preparation.

Given the affine transformation model α : R2 → R2, the image alignment can be per-

formed by selecting at least three pairs of corresponding points and computing six affine

transformation parameters shown below.




x′

y′



 =




a00 a01

a10 a11








x

y



 +




tx

ty



 (4.10)

99



The values (x′, y′) = α(x, y) are the transformed coordinates of the original image coordinates

(x, y) by affine transformation α(·). The four parameters, a00, a10, a01, and a11, represent a

2 by 2 matrix compensating for scale, rotation and shear distortions in the final image. The

two parameters, tx and ty, represent a 2D vector of translation.

Based on the model assumption from CLSM imaging, the limited range of shear and scale

values can be verified by scrutinizing entries in the affine transformation matrix (a01 and

a10 entries for shear, and a00 and a11 matrix entries for scale). This approach enabled me

to apply the affine transformation carefully in order to avoid any unreasonable registration

artifacts. As in any experimental setting, the registration decision about transformation

models is critical to automating 3D volume reconstruction. If other data sets have to be

modeled with more complex deformations (transformation models), then the steps of feature

selection, matching and registration parameter estimation should be re-visited.

From the image alignment accuracy viewpoint, corresponding pairs of segment centroids

should be well spatially distributed in each image, and should not be collinear. If points are

close to be collinear then the affine transformation parameters cannot be uniquely derived

from a set of linear equations (more unknowns than the number of equations), which leads

to large alignment errors. If points are locally clustered and do not cover an entire image

spatially then the affine transformation is accurate only in the proximity of the selected

points. However, the affine transformation inaccuracy increases with the distance from

the selected points, which leads to large alignment errors because a registration error metric

takes into account errors across the entire image area. In order to assess the pairs of matched

centroid points in terms of their distribution and collinear arrangement, I have designed a

compactness measure. It is defined as a ratio of the entire image area (AreaIMAGE) divided

by the largest triangular area formed from the points (AreaTRIANGLE). The measure is

defined mathematically in following Equation.

Compactness Measure =
AreaIMAGE

AreaTRIANGLE

(4.11)
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4.6 Results

This section provides the sub-volume alignment results in feature matching, matching re-

finement, and global transformation estimation and sub-volume transformation.

4.6.1 Feature matching

First, I outline the methodology for assessing upper error bounds of automatic, semi-

automatic, and manual 3D volume reconstruction techniques. The experimental variables

include the type of registration methods (automatic, semi-automatic and manual) and the

type of human subjects (experts and novices) performing registration. Human subjects were

labeled as experts if they had the knowledge about CLSM imaging, imaged specimen and

its anatomical/structural properties, and/or principles of the affine transformation based

registration algorithm. This type of knowledge was critical for establishing feature corre-

spondences and obtaining accurate registration results.

The result demonstrates benefits of automation for 3D volume reconstruction in terms

of achieved accuracy, consistency of results, and performance time. I also outline the limita-

tions of fully automated and manual 3D volume reconstruction systems, and describe related

automation challenges. The result shows that given computational resources and repetitive

experimental data, the automated alignment provides more accurate and consistent results

than a manual alignment approach. With the proposed approach, the automation will reduce

the alignment execution time and cost in the future, as the cost of more powerful computers

goes continuously down.

Alignment accuracy evaluation methodology

Similarly to the case of image mosaicking, it can be simulated by creating a pair of misaligned

images by applying a known affine transformation to a duplicate of an image and presenting
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the original and transformed images to a user for accuracy evaluation purposes. However,

this evaluation setup would not simulate the real problem of image alignment where two

real cross sections might have missing or new or warped structures with a priori unknown

intensity variations. Thus, I chose to establish the reference image and its corresponding

affine transformation parameters in the following way.

1. A stack of CLSM images (optical sections co-registered along z-axis) is acquired from

a physical section.

2. Multiple stacks of CLSM images are aligned by a manual alignment method, and

the representative of all resulting affine transformations is recorded, e.g., maximum

translation, rotation and shear.

3. A pair of misaligned images is constructed for accuracy evaluations by taking a pair of

images (apart from relatively large number of frames to simulate morphological defor-

mation) along the z-axis of one CLSM physical section and applying the representative

affine transformation (recorded in the second step) to the second image.

The first and the transformed images become the evaluation images with the known

ground truth affine transformation αGT (·). All pixel coordinates of the transformed (ground

truth) image PGT = {pgt
1 , pgt

2 , ..., pgt
n } are then defined by the affine transformation αGT : pi →

pgt
i . Based on user’s registration input, an affine transformation αUSR(·) is estimated. I de-

note the corresponding set of transformed pixel coordinates as PUSR = {pusr
1 , pusr

2 , ..., pusr
n },

where αUSR : pi → pusr
i . The final image alignment registration error Eaffine is then cal-

culated as an average Euclidian error distance over all pixels coordinates according to the

following equation, where m is the number of transformed pixels.

Eaffine =
1

m

m∑

i=1

√
(pgt

ix − pusr
ix )2 + (pgt

iy − pusr
iy )2 (4.12)
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Once again, with the smaller the error Eaffine , the better image alignment accuracy is

achieved.

The proposed image alignment evaluation methodology utilizes confocal imaging to ob-

tain required image frames, and empirically observed affine distortions to prepare test align-

ment data as close to real data as possible. The justification for choosing the alignment error

metric Eaffine is twofold. First, similar to the explanation provided for the choice of the

mosaicking error metric, an error metric based on pixel locations seems more appropriate

than a metric based on intensity comparisons due to CLSM intensity variations. Second,

it would not be fair to compute differences of affine transformation parameters since they

represent a mix of distortions (translation, rotation, scale and shear). Euclidean distances

over the registered area reflect the degree of misalignment. It would be possible to consider

a metric that would include the spatial mismatch only over the set pixels that are above a

certain intensity threshold. However, I decided to avoid introducing a threshold parameter

into our evaluation metric due to different unknown intensity ranges and distributions of a

pair of compared images.

Performance evaluation in different automation levels

I present an accuracy evaluation of manual, semi-automated, and fully automated registra-

tion technique for 3D volume reconstruction from fluorescent confocal laser scanning micro-

scope (CLSM) imagery. The presented region-based (semi-automated and fully automated)

method is designed based on the observations that (a) an accurate point selection is much

harder than an accurate region (segment) selection for a human, (b) a centroid selection of

any region is less accurate by a human than by a computer, and (c) registration based on

structural shape of a region rather than based on intensity-defined point is more robust to

noise and to morphological deformation of features across stacks. I applied the method to

image alignment registration steps and evaluated its performance with 20 human subjects
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on CLSM images with stained blood vessels. The experimental evaluation showed signif-

icant benefits of automation for 3D volume reconstruction in terms of achieved accuracy,

consistency of results and performance time. In addition, the results indicate that the dif-

ferences between registration accuracy obtained by experts and by novices disappear with

the proposed semi-automatic registration technique while the absolute registration accuracy

increases.

Manual vs. semi-automated alignment method: For the image alignment experi-

ments, I used the same user interfaces for selecting multiple points and regions as shown in

Figure 3.9 for test images in Figure 4.13. It was recommended that human subjects select

at least three points or regions, in such a way that they would be well spatially distributed

in each image but would not be collinear. If points are close to be collinear then the affine

transformation parameters cannot be uniquely derived from a set of linear equations (more

unknowns than the number of equations), which leads to large alignment errors. If points are

locally clustered and do not cover an entire image spatially then the affine transformation

is very accurate only in the proximity of the selected points. However, the affine transfor-

mation inaccuracy increases with the distance from the selected points, which leads to large

alignment error since the error metric takes into account errors across the entire image area.

In order to assess the points selected by a user in terms of their distribution and collinear

arrangement, I showed a compactness measure defined in Section 4.6.

I observed large alignment error when human subjects selected almost collinear points

or locally clustered points regardless of our recommendations. Figure 4.14 shows the rela-

tionship between compactness and alignment error modeled with a linear fit. I used three

different pairs of adjacent physical sections for alignment study, and the error results of all

experiments as a function of human subject trials are shown in Figure 4.15 and summarized

in Table 4.2. The t-test values for comparing the pixel-based and feature-based mosaicking
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Figure 4.13: Three pairs of image examples used for alignment evaluation
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Figure 4.14: Illustration of a strong correlation between the compactness measure and the
alignment error.

Table 4.2: A summary of image alignment
Error (pixels) manual (pixel-based) semi-automated (feature-based)

Expertise expert novice expert novice
Average 17.32 27.98 4.85 5.83

Standard deviation 27.12 43.28 5.63 6.71
Total average 22.28 5.28

Total std. deviation 35.74 6.11
Upper bound (99.73% confidence) 129.5 23.61

are shown in Table 4.3.

The image alignment results lead me to the following conclusions. First, manual (pixel-

based) image alignment is less accurate and less consistent (large standard deviation) than

the semi-automatic (feature-based) alignment. Based on the t-test result in Table 4.3, the

null hypothesis (no improvement) can be rejected with 99.9% confidence. Second, selection

of (a) collinear features, or (b) spatially dense points or regions, can have a detrimental ef-

fect on alignment accuracy. Third, experts achieved higher average alignment accuracy than

novices with both methods. Finally, the difference in alignment errors between experts and

novices using the pixel-based method is significantly reduced when human subjects start us-

ing the feature-based alignment method. I should also mention that the majority of human
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Figure 4.15: Alignment errors for all human trials including pixel-based (manual) and
feature-based (semi-automatic) alignment.

Table 4.3: The paired t-test result for errors of the pixel-based and the feature-based methods
in Table 4.2.

manual vs. semi-automated
Degrees of freedom 77

t value 4.109
p value 0.999
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Table 4.4: A summary of automatic image alignment experiments without optimization.
Automatic without optimization

Average error [pixels] 3.0949
Standard Deviation 2.0691

subjects selected only three points or regions for aligning two images. To demonstrate the

effect of the number of selected points on the registration accuracy, I computed the accuracy

by using all matching pairs of features detected by segmentation (27, 21, and 4 pairs for

each test in Figure 4.13). The estimated affine transformation results in 1.21, 1.12, and

2.54 pixel error distances for each test data, respectively. The average pixel error distance is

equal to 1.62 pixels and the standard deviation is 0.79. This result indicates that (a) more

well-matched points lead to more accurate alignment, and (b) instructing human subjects to

choose the maximum number of the features detected by segmentation would lead to higher

alignment accuracy.

Fully automated alignment method Unlike manual and semi-automated alignment

method, fully-automated method does not required a human intervention during the align-

ment process, and hence the number of selected features is not limited to three or four (that

is, usually selected by human subjects) but all detected features are used to search for the

best alignment by best feature selection using the compactness measure. Table 4.4 contains

results obtained using automated alignment from the test images in Figure 4.13. The au-

tomated alignment leads to the same result every time the algorithm is executed with the

same data therefore the standard deviation is equal to zero.

Figure 4.16 illustrates the correspondences found for the features by considering cen-

troid and area using the fully automated method described in Section 4.3.3. In Figure 4.17,

the circles denote three pairs of centroid points that were selected from the set of all pairs

shown in Figure 4.16 according to the proposed compactness measure described in Section

4.6.
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Figure 4.16: The correspondence outcome from two phases for the segments. The left and
right images are to be aligned. Overlays illustrate established correspondences between
segments that are labeled from 1 through 17. The centroid locations of segments are sorted
based on the correspondence error from the smallest error to the largest error.

Table 4.5: Datasets
Dataset 1 Dataset 2

Tile Size (pixels) 512 x 512 512 x 512
Tiles per frame (row x column) 7 x 3 5 x 5

Frame size after mosaicking (pixels) 2746 x 1170 2300 x 2300
Frames in a subvolume 13 13

Subvolumes 16 10
Channels 2 2

Memory Size 1336.5 Mbytes 1375.4 Mbytes

Performance evaluation for web-service based registration: I performed two user

studies to see how well the web-service based registration worked. NCSA received from UIC

two datasets. Table 4.5 gives some information about the size of the datasets. The data

delivered to NCSA was just the tiles for each dataset. Some preprocessing was needed before

the datasets could be used in the application described previously.

The first preprocessing step done was to mosaic the tiles into frames. Figure 4.18 shows
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Figure 4.17: The result of automated feature selection after processed to establish segment
correspondences shown in Figure 4.16. The circles of different colors represent three pairs
of centroids selected automatically according to the compactness measure defined in Section
4.5.

a single frame selected from the each dataset after the mosaicking. The fully automated

mosaicking preprocessing step took one hour for dataset 1 and four hours for dataset 2. When

scanning the sample, each tile was scanned at multiple depths resulting in a subvolume. The

next step is to combine the frames into the subvolumes again. Next the best frame of each

subvolume is selected and segmented [85, 88] (4 hours for each dataset). The information

about the segments and the centroid for each segment is packaged with the frame for use in

the web service application (1 hour for each dataset).

The URL of the web service application is send back to UIC for the medical expert to do

the alignment of frames. The medical expert will look at the frames and find corresponding

points in each successive frame and view the results. This process took 140 minutes for

dataset 2 and 129 minutes for dataset 1. Even though dataset 1 contains more subvolumes,

and hence more frames that need to be aligned, this dataset was finished faster than dataset

2. This could be explained by the fact that (a) the dataset 1 contains more visually salient

features than the dataset 2 and (b) dataset 2 was the first dataset processed by the medical
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Figure 4.18: The images after mosaicking. The edges of each tile are visualized using green
lines. On the left is a frame from dataset 1 and on the right is a frame from dataset 2.

expert and part of the extra time could be attributed to the learning process of the new tool.

After selecting the registration points an email message was send to NCSA with the

job numbers of the best alignments. These jobs are then used to extract the points selected

by the medical expert and used to create the final 3D volume. Dataset 1 resulted in a final

3D volume of 2746 x 1170 x 208 with 2 colors for each pixel in this 3D volume. Dataset 2

resulted in a 3D volume of 2300 x 2300 x 130 with again 2 colors per channel. Figure 4.19

show what the final 3D volume would look like for Dataset 1.
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Figure 4.19: 3D view of the reconstructed 3D volume using web service.
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Table 4.6: A summary of automatic image alignment experiments with and without opti-
mization.

Error [pixels] Automatic with and without optimization
Test images Image 1 Image 2 Image 3 Average
Optimization no yes no yes no yes no yes

Average 1.2839 1.4009 2.6508 2.1993 5.3500 2.2280 3.0949 1.9427
Standard Deviation 0 0 0 0 0 0 2.0691 0.4694

4.6.2 Matching refinements

Intensity-based optimization

I performed the optional intensity-based optimization step for comparison using the fully-

automated results in section 4.7.1. Table 4.6 contains results obtained using automated

alignment without and with the optional optimization step.

According to Table 4.6, the optimization step improved alignment accuracy for two

out of the three test image pairs (test image pairs 2 and 3). The optimization step was

conducted by choosing the correlation spatial neighborhood size M = 5 to control (a) the

amount of needed computation and (b) the maximum range of shear and scale. In our

experiments, all processing steps except the optimization took several seconds on a regular

desktop computer. The optimization step on its own took on average 19.66 minutes (16, 21

and 22 minutes) on a single processor machine (3.0GHz), for the three pairs of test images of

the pixel dimensions 579× 549, 584× 649, and 789× 512. The offsets of the three centroids

due to optimization were (+1, +1); (0, 0); (+1, 0) for image 1, (−2, 2); (1,−2); (1, 0) for image

2, and (2,−1); (2, 2); (2, 2) for image 3. The normalized correlation coefficient increased with

optimization by 7.8%, 21.3% and 12.4% for the test image pairs 1, 2 and 3 respectively.

Trajectory fusion

Evaluation metrics for alignment accuracy : In this section I define two evaluation

metrics to be used after applying the final global transformation such as overall residual and

discontinuity.
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Global residual: The global residual can be calculated by following:

R
(γ)
k =

1

n

n∑

i=1

r
(γ)
i (tki ⊕∆k

α(tk+1
i )) (4.13)

where r
(γ)
i (tki ⊕∆k

α(tk+1
i )) is a residual of i-th feature in sub-volume k and k + 1, and n is

the number of matching trajectories (features). I assume that sub-volume correspondence is

known, for example, tki and tk+1
i are assumed to be a pair of matching volume features.

Discontinuity: I define a trajectory discontinuity d(γ)(tki , t
k+1
i ) as a 2D Euclidian dis-

tance (in lateral plane) of the pair points that connects the adjacent trajectories.

d(γ)(tki , t
k+1
i ) =

∥∥∥e
(γ)
last(t

k
i ) − e

(γ)
first(t

k+1
i )

∥∥∥ (4.14)

where e
(γ)
last(t

k
i ) and e

(γ)
first(t

k+1
i ) are the adjacent (the last of tki and the first of tk+1

i ) 2D lateral

coordinates on the polynomial after fitting with degree γ. These coordinates are acquired

by evaluating the same axial z-coordinate with two different polynomial functions f
k(γ)
i and

f
k+1(γ)
i estimated from tki and tk+1

i . To incorporate the sub-volume gap ∆k for end point

evaluation, the axial z-coordinate need to be adjusted by +(∆k +1)×0.5 and −(∆k +1)×0.5

for tk and tk+1 respectively. For our notational convenience, note that γ = 0 implies that I

compute the 2D lateral Euclidian distance of physical end points (no polynomial evaluation).

Finally, the overall discontinuity D
(γ)
k of sub-volume k and k + 1 is defined as follows:

D
(γ)
k =

1

n

n∑

i=1

d(γ)(tki , t
k+1
i ) (4.15)

Trajectory fusion results: I evaluated the global residual and discontinuity by consider-

ing three variables for trajectory based 3D volume reconstruction from CLSM: (1) polynomial

degree γ of centroid trajectories along axial direction (z-axis of the sub-volume), (2) assumed

gaps between adjacent sub-volumes ∆k, (3) trajectory fusion approach (extrapolation versus
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Figure 4.20: A pair of sets of (exaggerated) trajectories from adjacent sub-volumes. Numbers
indicate the label of matching trajectories. Red line segments indicate centroids, and green
curves indicate a polynomial function with degree 3.

residual minimization).

After acquiring the set of volume features after feature detection on volume segments

as shown in Section 3.7.4, feature correspondence are established based on feature match-

ing described in Section 4.4. Next, I compute trajectories tsub−volume1
i and tsub−volume2

i

(i ∈ matching features) based on the series of centroids from 2D optical sections in each

volume feature. An example of a pair of 3D trajectories is shown in Figure 4.20.

Figure 4.21 shows the result of discontinuities from trajectory fusion using extrapola-

tion method and residual minimization method in linear, quadratic, and cubic models with

respect to different sub-volume gaps. Based on the result, I conclude the followings; (1)

the extrapolation method achieves lower (better) discontinuity than residual minimization

method regardless of the polynomial model complexity; (2) discontinuity is not necessarily

related to the size of the physical gaps; and (3) using same method, discontinuity is relatively

insensitive to the degree of the polynomial model complexity (e.g., curves in the graph using

the same method remain close to each other).
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Figure 4.21: Trajectory discontinuity as function of physical gaps between adjacent sub-
volumes: EX() and RM() refer to extrapolation method and residual minimization method
respectively. Note that extrapolation method is plotted as dotted lines, and residual mini-
mization method is plotted by solid lines.

Figure 4.22 shows the result of trajectory residuals after fusing depth-adjacent trajectory

segments using extrapolation method and residual minimization method. From the result, I

conclude that; (1) using same degree of polynomial model complexity, residual minimization

method always achieves lower (better) residual than extrapolation method; (2) all residu-

als (all method and degrees of polynomial model complexity) tend to decrease about the

size of physical gaps of the adjacent sub-volumes; and (3) the degree of polynomial model

complexity is relatively more sensitive than the method.

Figure 4.23, Figure 4.24, and Figure 4.25 show a 3D visualization without optimization,

with optimization using extrapolation method, and with optimization using residual mini-

mization method respectively. The figures on the right shows the side views of regions that

demonstrate structural discontinuity of volume segments in a sub-region marked in the im-

ages on the left. It shows that feature segments has high discontinuity when trajectory-based

refinement has not been performed (see Figure 4.23 (b). One could notice that refinement us-
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Figure 4.22: Trajectory residual as function of physical gaps between adjacent sub-volumes:
EX() and RM() refer to extrapolation method and residual minimization method respec-
tively. Note that extrapolation method is plotted as dotted lines, and residual minimization
method is plotted by solid lines.

ing extrapolation or residual minimization significantly improves the discontinuity of feature

segments (see Figure 4.24 (b) and Figure 4.25 (b)).

4.6.3 Global transformation estimation and sub-volume

transformation

Figure 4.26 shows a final 3D volume which consists of four consecutive sub-volumes from

CLSM image stacks. Three sub-volumes (sub-volume 2, sub-volume 3, and sub-volume 4)

are transformed to the target coordinate (the original coordinate system of sub-volume 1),

and merged along axial direction (depth). One might detect some cylindrical structures

(e.g., blood vessels) deforming along depth. Figure 4.27 shows a side view of the volume in

Figure 4.26. It shows some intensity discontinuities along axial direction at physical bound-

aries of the slides. However, note that the visual discontinuity arises mostly from intensity

heterogeneity (which can be corrected in visual enhancement), and structural morphology
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Figure 4.23: (left) Final 3D volume without trajectory fusion (gap = 1), and (right) sub-
region at the box in the left image.

 
  


Figure 4.24: (left) Final 3D volume after trajectory fusion with extrapolation (gap = 1,
linear model), and (right) sub-region at the box in the left image.
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Figure 4.25: (left) Final 3D volume after trajectory fusion with residual minimization (gap
= 1, cubic model), and (right) sub-region at the box in the left image.

is quite well preserved.

4.7 Summary

I report accuracy evaluations for (1) three registration methods including manual (pixel-

based), semi-automatic (region centroid feature-based) and fully automatic (correlation-

based) registration techniques and (2) two groups of human subjects (experts and novices).

The study demonstrates significant benefits of automation for 3D volume reconstruction in

terms of achieved accuracy, consistency of results, and performance time. In addition, the

results indicate that the differences between registration accuracy obtained by experts and

by novices disappear with an advanced automation while the absolute registration accuracy

increases. If one is interested in performing data-specific evaluations then we prepared web

based tools [76] for better data understanding and analysis at the URL 4.

4http://i2k.ncsa.uiuc.edu/MedVolume/
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Figure 4.26: 3D view of the reconstructed 3D volume from four consecutive sub-volumes of
CLSM image stacks (top view).
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Figure 4.27: 3D view of the reconstructed 3D volume from four consecutive sub-volumes of
CLSM image stacks (side view).
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I investigate the main factors behind the summarized experimental results and present

them in this section. First, the feature-based registration is faster and more accurate than

pixel-based registration for alignment problems. The claims in accuracy improvement are

supported by the paired t-test result. Second, the image alignment upper bound errors

(23.61 for semi-auto and 129.5 for manual) are much higher than the mosaicking upper

bound errors (4.12 for auto, 5.12 for semi-auto and 27.42 for manual). I believe that the

main factors behind these differences are (1) one order higher complexity of the alignment

problem (intensity and spatial structure variations across slides) in comparison with the mo-

saicking problem (intensity variations across tiles), (2) a larger degree of freedom in occurring

image alignment transformations (rotation, scale, shear and translation) than in mosaicking

transformations (translation), and (3) significantly larger sensitivity to human inconsistency

in selecting points (attention level, skills, fatigue, display quality). Human inconsistency is

expressed by a much larger standard deviation of errors in the case of alignment (35.74 for

manual and 6.11 for semi-auto) than in the case of mosaicking (6.82 for manual and 0.35 for

semi-auto).

Suggested fully automated method demonstrates significant benefits of automation for

3D volume reconstruction in terms of achieved accuracy (on average, 9.4 or 15 times smaller

alignment error without or with optimization), consistency (25.8 or 113.7 times smaller

standard deviation without or with optimization) of results and performance time. I also

outlined the limitations of fully automated and manual 3D volume reconstruction systems,

and described related automation challenges. I showed that given computational resources

and repetitive experimental data, the automated alignment provides more accurate and

consistent results than a manual alignment approach. With the proposed approach, the

automation will reduce the alignment execution time and cost in the future, as the cost of

more powerful computers goes continuously down.

Next, I presented a prototype solution for 3D medical volume reconstruction that was

used in practice by UIC and NCSA collaborators. I overviewed the 3D volume reconstruc-
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tion problem requirements, the architecture of the developed prototype system using web

services and the tradeoffs of our system design. In a summary, the web services based ap-

proach provides two major advantages. First, a user will be able to perform computationally

intensive image operations (a) with large size image data and (b) with sophisticated 3D vol-

ume reconstruction analysis methods. Furthermore, a user will not have to invest into (a)

computational and storage resources and (b) development of complicated analysis software.

Second, the currently advertised interoperability feature of web services will enable us in

the future (a) to customize system front end (graphical user interfaces (GUI) for the user

entry point) without changing system back end (complex algorithms that perform desired

computations), (b) to upgrade algorithms and fix software bugs without any involvement of

a user, and (c) to integrate distributed web services that will be available on the Internet.

Matching refinements are performed in two different senses: (1) optional intensity-based

optimization for 2D alignment and (2) registration optimization based on trajectory fu-

sion using 3D information. The intensity-based optimization showed improved alignment

accuracy for two out of the three test image pairs (test image pairs 2 and 3). By using

intensity-based alignment as an optimization step (rather than using alignment method), I

could achieve low erroneous alignment with reasonably low computational cost. The registra-

tion optimization using trajectory fusion is aimed for preserving morphological smoothness

of medical structures inside of the reconstructed 3D volume. To preserve morphological

smoothness of the reconstructed 3D medical structures, I defined two metrics for morpho-

logical continuity labeled as end point discontinuity and polynomial curve fitting residual,

and then minimize the metrics across adjacent sub-volumes and all salient structures.
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Chapter 5

VISUAL ENHANCEMENT OF 3D
CLSM VOLUME

5.1 Introduction

Visual inspection of medical specimens is one of the most common techniques in a medical

domain used for learning and diagnosis. Based on the need to investigate specimen charac-

teristics at high spatial resolution, fluorescent Confocal Laser Scanning Microscopy (CLSM)

imaging is frequently used for obtaining 2D images of cross sections. The fluorescent labeling

of medical specimens creates the basis for researchers to inspect visually spatial locations and

morphology of structures of interest. Ideally, with confocal imaging and 3D volume recon-

struction in place, CLSM image intensities provide 3D information about not only presence

or absence but also abundance. Unfortunately, the intensity information is distorted due to

multiple specimen preparation and image acquisition limitations. Thus, there is a need to

investigate techniques for fluorescent CLSM image intensity adjustment to support visual

inspection tasks.

The work primarily supports visual inspection of 3D volumes in virtual reality environ-

ments [21], where the 3D volumes are obtained by tile mosaicking and cross section align-

ment, then quantitatively analyzed (e.g., segmented) and correlated with information from

other sensors (data integration). It is well recognized that spatial intensity heterogeneity is

a major barrier in acquiring reliable results during the above analyses [11]. For example,

major difficulties of 3D volume segmentation arise from spatial intensity heterogeneity rather

than from intensity noise [73].

In this chapter, I introduce an intensity heterogeneity correction technique with auto-
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Figure 5.1: Intensity Correction Problem: (a) measured intensity profile for CLSM images
with intensity bias (solid curve) and (b) corrected intensity profile. Intensity bias has been
corrected while preserving local intensity gradients)

matic parameter selection based on image analysis [87]. The technique (a) adjusts intensity

heterogeneity in x-y plane, (b) preserves fine structural details, and (c) enhances image

contrast by performing spatially adaptive filtering, denoted as mean-weight filtering. I also

provide novel numerical comparison metrics to objectively evaluate the quality of multiple

intensity correction methods, such as low frequency and high frequency based metrics.

Although the intensity heterogeneity correction problem may be viewed as a restoration

problem, I formulate the problem as an optimization problem since it is impossible to ob-

tain the true uncorrupted intensity values for comparative purposes. Thus, I formulate the

intensity heterogeneity correction problem as a search for an optimal, spatially adaptive, in-

tensity transformation that (1) maximizes intensity contrast with respect to background, (2)

minimizes overall spatial intensity variation for large area, e.g., low frequency domain, and

(3) minimizes distortion of intensity gradient for local features, e.g., high frequency domain,

as shown in Figure 5.1. I assume that the input image contains a single band (or a grayscale

image) with spatially varying intensities.

125



5.2 Related Work

There are several known factors that cause spatial intensity heterogeneity, such as (a) photo-

bleaching, (b) fluorescent attenuation along confocal (depth) axis, (c) image acquisition fac-

tors [11, 124, 42], (d) variations of illumination exposure rate, (e) spatially uneven distribu-

tion of dye and the spatial characteristics of illumination beams [107], and (f) fluorochrome

micro-environment, e.g., pH, temperature, embedding medium, etc [138]. However, it may

not be trivial to monitor all exact states of a fluorescent dye in any imaged specimen at

a pixel resolution, as well as to know many of the image acquisition factors. Thus, it is

very challenging to develop an intensity heterogeneity compensation method that would be

directly linked to the sources of intensity heterogeneity coming from specimen preparation

and image acquisition steps.

Given the complexity of factors introducing intensity heterogeneity, there are two ap-

proaches to improve CLSM images in a lateral plane. First, one could focus on improving

specimen preparation and imaging conditions, e.g., improved fluorescent dyes [13]. Second,

one could attempt correcting pixel intensities after image acquisition as it is the case of image

restoration [129]. Image restoration can be performed based on empirical correction methods

for intensity loss [127], constant thresholding [69], iterative correction methods [146, 126],

2D histogram [93], or estimations of intensity decay function [75]. Most of these methods

assume that the rate of photo-bleaching (a) is spatially homogeneous in a lateral plane, (b)

can be characterized by an exponential function in depth [124], and (c) mainly contributes

to intensity loss along the specimen depth axis (z-axis) [107]. However, these assumptions

might not always be satisfied as it was the case in the experiments.

In the past, Histogram Equalization (HE) has been used in early applications [48] to

correct spatial intensity heterogeneity in lateral (x-y) plane. Histogram equalization leads

to a uniform global intensity distribution in output image. However, it cannot effectively

enhance local intensity variation due to its global property. To address this problem, Adap-
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tive Histogram Equalization (AHE) has been used to adjust intensity variation locally by

computing local histograms within spatially different windows [117]. A major problem of

Adaptive Histogram Equalization is high sensitivity to noise, which results in amplification

of undesired noise values. An improved approach to adjust local intensity variation is the

Contrast Limiting Adaptive Histogram Equalization (CLAHE) [116]. It reduces noise am-

plification due to Adaptive Histogram Equalization by setting clipping limits and so removes

boundary artifacts by background subtraction. Nevertheless, the main drawbacks of CLAHE

are (1) the parameters need to be manually selected and (2) there could be loss of fine details

caused by intensity saturation. Some researchers proposed an intensity correction method

based on the bias field, e.g., intensity distortion map, to a polynomial function which is

defined in prior [137]. However, this method requires prior knowledge about images, e.g.,

the degree of a polynomial function, and the computational complexity tends to increase

exponentially upon the degree of a polynomial function.

5.3 Visual Enhancement

To solve the problem as formulated above, I designed a spatial filter and several image qual-

ity measures according to the optimization criteria. The approach combines a kernel-based

spatial filtering, and incorporates local and global image intensity analysis.

Intuitively, 3D voxel intensity adjustment should be performed by examining neighboring

voxels and adjusting (filtering) intensities to meet visual inspection criteria without distort-

ing true intensities too much. However, the 3D voxel intensity adjustment approach ignores

the fact that intensity heterogeneity observed in a lateral plane (x-y) and along an axial

coordinate (z or depth) are fundamentally different in their nature. In a lateral (x-y) plane,

intensity heterogeneity can be characterized by relatively low frequency variations while

intensities along an axial coordinate change more rapidly over a small physical distance
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(thickness of a cross section). I have primarily focused on designing a 2D filtering technique

that preserves edge intensity gradient in a lateral (x-y) plane and minimizes rapid intensity

variations along an axial coordinate. The filtering along axial direction is embedded into the

filtering of any lateral (x-y) plane by performing frame mean intensity based background

separation and intensity rescaling after speckle noise removal to cover the full dynamic range,

e.g., 0 to 255 for a byte image.

The proposed 3D intensity correction process consists of (1) determining the background

threshold intensities for each frame, (2) optimizing the kernel size, (3) constructing a set of

2D intensity correction maps for the volume, (4) multiplying the intensity correction maps

to the frames, (5) remove outlier pixels (speckle noise) from the corrected images based on

statistical value ranges, and (6) rescaling the intensity range of each frame to cover the full

dynamic range of the data. The method is denoted as Mean-weight filtering. In this section,

I describe the filter model and the automatic kernel parameter selection based on the image

analysis.

5.3.1 2D filter model

An image filtering approach to the presented intensity correction problem can be described

as:

g[a,b](x, y) = I(x, y) · w[a,b](x, y) (5.1)

where g[a,b](x, y) and I(x, y) are the output and input pixel values at (x, y) respectively and

w[a,b](x, y) is the weighting coefficient computed over a pixel neighborhood ([x−a, x+a], [y−

b, y+b]). The spatial neighborhood, also denoted as a filtering kernel of size (2a+1)×(2b+1)

is introduced to meet the requirement on local intensity gradient. Other requirements on

intensity contrast and global spatial intensity variations are incorporated into the filter design
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by (a) separating background according to Equation (5.2), and (b) computing the weighting

coefficient w(x, y)[a,b] as a ratio of global and local sample means (see Equation (5.3)).

Î(x, y) =






0 ifI(x, y) ≤ σ

I(x, y) ifI(x, y) > σ
(5.2)

w[a,b](x, y) =






1 ifI(x, y) ≤ σ

0 ifµL[a,b](x, y) = 0

µG

µL[a,b](x,y)
ifµL[a,b](x, y) 6= 0

(5.3)

where µG and µL[a,b](x, y) are the global and local estimated sample means computed ac-

cording to Equations (5.4) and (5.5), and σ is a background threshold intensity value.

µG =
1

NM − |φG|
·

N∑

i=1

M∑

j=1

Î(i, j) (5.4)

µL[a,b](x, y) =
1

(2a + 1)(2b + 1) −
∣∣φL[a,b](x, y)

∣∣ ·
a∑

s=−a

b∑

t=−b

Î(x + s, y + t) (5.5)

where φG = {(x, y)|Î(x, y) = 0; 1 ≤ x ≤ N, 1 ≤ y ≤ M}, φL[a,b](x, y) = {(s, t)|Î(x+s, y+t) =

0;−a ≤ s ≤ a,−b ≤ t ≤ b}, and N and M are the width and height of the input image. I

denoted the threshold image as Î(x, y) and the estimated weighting coefficients as w[a,b](x, y).

It is apparent that the weighting coefficients could be ill-defined when the local sample

mean takes very small values (the spatial kernel belongs to background with some noise,

µL[a,b](x, y) ≈ 0.) To avoid this problem, input image is thresholded first, and then the

values of global and local sample means are computed only over foreground pixels. In the

filter design, I introduced two parameters, such as a background threshold σ and a kernel size
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(2a + 1)× (2b + 1). In order to automate the filtering method and achieve a parameter-bias

free performance, I describe novel data driven parameter selection methods in the next two

sections.

5.3.2 Background separation

To separate background from foreground in image, one would like to decide on an appro-

priate threshold value σ for noise removal due to variable camera exposures or sensitivity

of fluorescent photo multiplier tube. In general, the background threshold value could be

determined by purely depending on images, such as variogram [130]. However, it is pre-

ferred that the noise model of different imaging techniques should be modeled differently

based on known imaging physics such as Exponential, Rayleigh, Gaussian, Gamma, Pois-

son, or Weibull function [67]. Although those functional models fit well for specific imaging

modalities, it is well known that the noise in laser imaging can be modeled by an exponen-

tial function [117]. In background separation, I assume an exponential noise model for the

CLSM background noise.

To select a set of threshold values for a stack of images, I first select the brightest image

frame based on the foreground sample means and select the threshold value. Next, each

threshold value for individual frame is selected by adjusting the selected threshold values

with respect to its sample mean. This process enables us to separate out the background

with high confidence since the brightest image offers (1) low intensity frequency in low in-

tensity range, (2) concentrated intensity frequency distribution in high intensity value, and

(3) low mixture of foreground intensity frequency with background noise.

I derived σ by modeling a frequency function of the pixel intensities, i.e., a histogram,

and by comparing with underlying physical models of CLSM imaging. I model the fre-

quency function of intensity values as a conjunction of (a) background noise Λ(v) in a

photo-multiplier tube and (b) foreground fluorescent pixel intensity distribution Φ(v), where

v is an intensity value, e.g., bin number in histogram. Assuming that Λ(v) and Φ(v) follow
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Figure 5.2: Intensity distribution for a CLSM image. Φ(v) is illustrated as a Gaussian
function.

an exponential and unknown exponential family of functional model, I define the frequency

functions as Λ(v) = αeβv and Φ(v) = γ(v)eκ(v) where α, β are constants and γ(·), κ(·) are

some functions for foreground intensity values. Assuming the defined components are in-

dependent and noise are additive, the frequency function F (v) of output intensity can be

modeled as a sum of Λ(v) and Φ(v), which is F (v) = Φ(v) + Λ(v) as illustrated in Figure

5.2.

In particular, since the background pixels usually appear in low-intensity ranges and

I assume no prior knowledge about the foreground intensity frequency model, for thresh-

olding purpose, I only consider the left part of the F (v) where foreground intensity starts

to contributes to F (v) by fitting the noise model Λ(v) to the low intensity range of F (v).

To compute the background frequency function, I estimated the parameters α, β using the

least-squared methods [148] as following:




∑k

v=1 F (v)
∑k

v=1 vF (v)
∑k

v=1 vF (v)
∑k

v=1 v2F (v)








α

ln(β)



 =




∑k

v=1 F (v) ln(F (v))
∑k

v=1 vF (v) ln(F (v))



 (5.6)

where F (v) is the frequency (e.g., pixel count) of the intensity value v in the input image, k

is the bin number (intensity value) in [1, n], and n is the total number of bins.
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Figure 5.3: Sum of the squared error of the estimated function for (a) and (b). The intensity
value k minimizing R are 26 and 9 respectively.

In order to find the threshold value which is dominantly determined by the background

noise by photo-multiplier tube, I computed the sum of squared error

R(k) =

(
1/0.1n

√∑0.1n
v=1 (F (v) − Λk(v))2

)
by increasing k from 3 to n, where Λk(v) is an

exponential function fit to first k bins. Since I approximated the foreground pixel intensity

distribution for the left tail only, I calculated the sum of squared error for the pixel intensity

values in 10% of low intensity value range, i.e., [1, 25] in byte (8-bit) image. It approximates

Λk(v) in the input image well enough since R is not affected much by large intensity values

(see Figure 5.2). Figure 5.3 shows the sum of squared error R as a function of k for the real

CLSM images used in the experiments. The graph shows that (a) the estimate of the inten-

sity multiplication factor only for low intensity values results in high error, (b) there exists

an intensity value k which minimize the error, and (c) the sum of squared error increases

when the Λ(v) starts mixing with Φ(v), i.e., fitting the entire curve.

Finally, the background threshold value σ is determined by the value k where the es-

timated function Λk(v) best fits with the background noise in the input image such as

σ = arg min(R(k))
k∈[1,n]

. In the example shown in Figure 5.3, I acquired the threshold values 26

and 9 for each image.
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5.3.3 Kernel size optimization

In order to compute local sample means, one has to choose the size and shape of a filter-

ing kernel for an input image. I first constrained the kernel shape to a square. Then I

selected a kernel size based on maximizing the global contrast and minimizing the gradient

distortion, e.g., high frequency distortion. The global contrast metric [7] incorporates one

of the requirements of the intensity heterogeneity correction problem and is mathematically

described below.

C =
∑m

i=1
‖fi(I) − E(f(I))‖ × f(I)i (5.7)

where f(I) is the histogram (estimated probability density function) of all contrast values

by using Sobel edge detector in an image I, fi(I) is the density of i-th bin, E(f(I)) is the

sample mean of the histogram f(I), and m is the number of distinct contrast values in a

discrete case. The equation includes the contrast magnitude term and the term with the

likelihood of contrast occurrence. In general, image frames characterized by a large value of

C are more suitable for further processing than the frames with a small value of C.

To demonstrate the high frequency image difference between the original image and the

processed image, I define a metric D as follows:

D =

M∑

v

N∑

u

(Iorg
hf (u, v) − Iadj

hf (u, v))2 (5.8)

where Iorg
hf and Iadj

hf are the high-pass filtered images of the original and the intensity adjusted

image respectively. Finally, the filter size is selected by evaluating the maximum value of

the ratio C/D denoted as a measure of image saliency.
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5.3.4 Speckle noise removal and intensity rescaling

One of the side products of the mean-weight filtering is an easy detection of speckle noise

in the background. Speckle noise is characterized by a very few or no neighboring pixels

and the mean-weight filtering generates very high intensity correction value for the speckle

pixels. I have eliminated speckle noise by removing the pixels with high intensity correction

values, and accepted the pixels with values within the range [0, µ + 4σ] (99.99% of pixels

are included), where µ and σ are the sample mean and standard deviation of the intensity

corrected image. Finally, the values within the range [0, µ + 4σ] are normalized (rescaled)

to [0, 255] to meet the dynamic range of output images (8 bits per pixel).

5.4 Results

In this section, first, I show simulation results of three synthetic images with pre-defined bias

fields (intensity distortion map). I apply the bias fields to images with known structures

in order to demonstrate performance of the developed method in multiple well-understood

intensity distortion scenarios. Next, I report comparisons of the developed mean-weight

filtering method and other techniques using real CLSM images. In these comparisons, it is

assumed that the intensity bias fields are unknown.

5.4.1 Simulation

Synthetic data preparation: First, I created three pre-defined intensity variations (bias

fields) as shown in Figure 5.4 (a), (b) and (c). The intensity variations demonstrate spatially

localized bias (Figure 5.4 (a) and (c)) with or without significant saturation, and spatially

distributed bias (Figure 5.4 (b)). Second, an intensity bias free image of 512 x 512 pixel

resolution with known structures (shown as horizontal and vertical bars with different thick-

ness and spacing) was formed to simulate fluorescent boundaries of medical specimen (e.g.,

blood vessel boundaries) as shown in Figure 5.5. Third, the bias free image is distorted by
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(a) (b) (c)

Figure 5.4: Images of intensity bias fields (intensity distortion maps.)

 


Figure 5.5: Simulation images: a bias-free image with known structures.

applying the intensity bias fields in Figure 5.4. Finally, random exponential synthetic noise

is added into each image (with density function Λ(v) = 0.3e0.3v). The final synthetic images

for the simulation are shown in Figure 5.6, (a), (b) and (c).

Image processing: I performed intensity correction of the three simulated images by find-

ing the threshold value for background separation and optimizing the kernel size described

in the previous section. First, background threshold value was selected by finding the lowest

residual after fitting exponential function to the low intensity range. Figure 5.7 shows the

three curves of residuals for the simulation images. Based on the residual, I selected 20, 20,

and 20 for the background thresholding of the simulation images.
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(a) (b) (c)

Figure 5.6: Simulation images: three images distorted by applying the bias fields shown in
(a), (b) and (c) in Figure 5.4. Thickness and the spacing of the bar structures are decreasing
toward the lower right corner.

Next, to optimize the kernel size for each image, I calculated the image saliency mea-

sure (C/D) using different kernel sizes. The results shown in Figure 5.8 (c) illustrate that

the image saliency measure is low for small kernel sizes (affected by large D), having a

peak, and decreasing for large kernels (due to decreasing C). One can conclude that (1) for

small kernels, the contrast C is maximized but the high frequency distortion is large, (2)

for large kernels, the high frequency distortion is minimized but the contrast C is compro-

mised. Therefore, the simulation results verified that the optimal kernel size is achieved by

maximizing the contrast divided by the high frequency difference (C/D). In the simulation

experiments, I calculated C/D using kernel sizes from 3 to 51 pixels wide, and obtained the

optimum values equal to 33, 19 and 47 pixel widths respectively (see the peaks in Figure 5.8

(c)).

To generate intensity corrected images, first, I computed the weight for each pixel by

analyzing distorted images (unknown bias field). Figure 5.9 shows the distribution of weights

(also denoted as the intensity correction map) for three distorted synthetic images. Next,

each intensity correction map is applied to the distorted image to generate the intensity

corrected images.

Figure 5.10 shows the intensity corrected images using the intensity correction maps
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Figure 5.7: Background thresholding.
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Figure 5.8: (a) Contrast C, (b) high frequency distortion D, and (c) image saliency as a
function of the kernel size. The curves are computed for image data shown in Figure 5.6 (a),
(b) and (c).
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Figure 5.9: Intensity correction maps with (a) σ = 20; a = b = 33 , (b) σ = 20; a = b = 19,
and (c) σ = 20; a = b = 47. Note that the weight is pseudo colored, where blue denotes low
and red denotes high values.

 
  
  


Figure 5.10: Intensity corrected images using the Mean-weight filtering from Figure 5.9. For
each of the three images, the intensity bias has disappeared.

shown in Figure 5.9. Regardless of the type of a bias field, all three intensity corrected im-

ages show noticeable results that the mean weight filtering corrects intensity heterogeneity

in spatially large area of the images while preserving the edge gradients (minimum high

frequency distortion).

Figure 5.11, Figure 5.12 and Figure 5.13 show the intensity correction results for the

three simulation images, using Histogram equalization, Histogram equalization with back-

ground separation, and CLAHE. One could notice that (a) Histogram equalization saturated

most of pixels as well as background noise, and removed edge gradient significantly (b) His-

togram equalization with background separation separated out background noise, but the
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Figure 5.11: Result of Histogram Equalization

 
  
  


Figure 5.12: Result of Histogram Equalization with background thresholding

edge gradient is not preserved well similarly to the Histogram equalization, and (c) CLAHE

relatively well preserved the edge gradient, but the spatial (x-y) intensity heterogeneity has

not been corrected in comparison to the Mean weight filtering.

To demonstrate the spatial intensity correction result, Figure 5.14 shows the intensity

profiles (along the red line Figure 5.5) of the test image (c) in Figure 5.6 for the original

(uncorrected) image, existing methods, and the mean weight filtering. The intensity profile

clearly demonstrates that the intensity along x-y plane is best corrected by the mean weight

filtering, i.e., intensity value remains between 140 and 200.
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Figure 5.13: Result of CLAHE.
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Figure 5.14: Intensity profile along the red line in Figure 5.5.

140



5.4.2 Real CLSM images

Material preparation: Formalin-fixed, paraffin-embedded uveal melanoma tissue sam-

ples were sectioned at 4 m thickness. The use of archival human tissue in this study was ap-

proved by the Institutional Review Board of the University of Illinois at Chicago. Slides were

deparaffinized in xylene and rehydrated through a decreasing ethanol gradient. Slides were

rinsed in distilled water followed by antigen unmasking using Target Retrieval Solution 10X

Concentrated (DAKO, Carpenteria, CA) according to the manufacturer’s instructions and

then rinsed in Phosphate Buffered Saline (PBS) for 5 minutes. Slides were incubated with

monoclonal mouse anti-laminin antibody Sigma L8271, clone LAM 89 (Sigma, St. Louis,

MO) at a dilution titer of 1:200 for 30 minutes at room temperature. Slides were rinsed in

protein blocking solution (DAKO) for ten minutes followed by detection with Alexa Fluor

488 goat anti-mouse IgG (Molecular Probes, Eugene, OR) for 30 minutes at a dilution of

1:400. Slides were rinsed in buffer then mounted in Faramount Aqueous Mounting Medium

(DAKO). For all staining procedures, secondary antibody was omitted in negative controls.

All histological serial sections were examined with a Leica SP2 laser scanning confocal

microscope (Leica, Heidelberg, Germany) using the 40X objective with 605 700 nm excita-

tion wavelength range for the test specimens. Images were stored in tagged information file

format (TIFF) with 512 by 512 pixel resolution. One 3D volume was formed from 13 image

frames along axial coordinates (z-coordinate or depth) in a same lateral area. Therefore,

a sub-volume consists of 512 by 512 by 13 voxels, which is equivalent to 375 x 375 x 3.91

microns in physical dimension. The red structures represent extravascular matrix patterns

(loops) or blood vessels. Two unprocessed images with spatial intensity heterogeneity are

shown in Figure 5.16 (a) and Figure 5.18 (a).

Compared intensity correction techniques: The intensity of each image is corrected

by (1) Histogram Equalization, (2) Histogram Equalization with background threshold, (3)
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Figure 5.15: Image Saliency Measure for automatic kernel selection: the optimal kernel sizes
are 15 and 21 for the two test image shown in Figure 5.16 (a) and Figure 5.18 (a).

Contrast Limited Adaptive Histogram Equalization, and (4) Mean Weight Filtering with

automatic parameter selection. To apply the mean weight filtering, the background thresh-

old and kernel size are automatically selected as illustrated in Figure 5.3 and Figure 5.15.

According to Figure 5.3, the optimal threshold parameters are 26 and 9 for the test images in

Figure 5.16 (a) and Figure 5.18 (a). Similarly, according to Figure 5.15, the image saliency

measure the optimal kernel sizes are 15 and 21 (selected as the peak of each curve).

Using the optimal parameters, corresponding intensity correction maps (weight coeffi-

cients) are generated and presented in Figure 5.16 (f) and Figure 5.18 (f). The dark edge

pixels in each original image are weighted by larger value coefficients, and the bright edge

pixels are weighted to remain approximately the same.

Figure 5.16 and Figure 5.18 show the original CLSM image and processed results by

histogram equalization (shown as the image (b)), histogram equalization with background

thresholding (shown as the image (c)), CLAHE (shown as the image(d)), and mean weight

filtering (shown as the image (e)). One could visually notice that the histogram equaliza-

tion method removes best intensity heterogeneity in large spatial regions but maintains low

visual saliency (low contrast) and removes edge details (high frequency distortion). The
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(a) (b) (c)

 
  
  


(d) (e) (f)

Figure 5.16: CLSM test image 1: (a) Original test image, (b) histogram equalization, (c)
histogram equalization with background thresholding, (d) CLAHE (”adapthisteq()” with
default setting by Matlab Image Processing Toolbox, Build. R12), (e) mean weight filtering,
and (f) intensity correction maps by the mean weight filtering.

histogram equalization with background thresholding and Contrast Limited Adaptive His-

togram Equalization demonstrate similar removal of edge gradient and edge details. To

demonstrate the effect of edge gradient, I show a sub-region of the intensity corrected im-

ages in Figure 5.17 and Figure 5.19. One could see that most of pixel values around the

edge was saturated using HE, HEB, or CLAHE. Next, I show the quantitative evaluation of

the compared techniques.

Evaluation Metrics: In order to quantitatively asses the quality of multiple filtering tech-

niques for real CLSM images, multiple intensity correction results are compared by (a) image
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(a) (b) (c) (d) (e)

Figure 5.17: Sub-region of Intensity corrected images in Figure 5.16 (From left, original im-
age, Histogram Equalization, Histogram Equalization with background threshold, CLAHE,
and Mean-weight filtering.)

 
  
  


(a) (b) (c)

 
  
  


(d) (e) (f)

Figure 5.18: CLSM test image 2: (a) Original test image, (b) histogram equalization, (c)
histogram equalization with background thresholding, (d) CLAHE (”adapthisteq()” with
default setting by Matlab Image Processing Toolbox, Build. R12), (e) mean weight filtering,
and (f) intensity correction maps by the mean weight filtering.
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(a) (b) (c) (d) (e)

Figure 5.19: Sub-region of Intensity corrected images in Figure 5.18: (a) original image,
(b) Histogram Equalization, (c) Histogram Equalization with background threshold, (d)
CLAHE, and (e) Mean-weight filtering.

contrast C, (b) high frequency distortion D, (c) the low frequency intensity heterogeneity

S (evaluated by the image entropy in low frequency domain) [98], and (d) the number of

saturated pixels N . The metric N is defined in following equation.

N =

M∑

v

N∑

u

sat(Iorg(u, v), Iadj(u, v)) (5.9)

where sat(Iorg(u, v), Iadj(u, v)) =






1 ifIorg(u, v) 6= l, Iadj(u, v) = l

0 otherwise
, Iorg and Iadj are the

original and intensity adjusted images, and l is the maximum intensity value of the original

image, e.g. 255 in a byte image. For best image quality, it is desirable to achieve large C

and small S, D, and N .

Comparative results: Figure 5.20 and Figure 5.21 present the results obtained by mul-

tiple intensity correction techniques, and evaluated with high frequency difference and low

frequency intensity heterogeneity metrics D and S as a function of filter size. Based on

these results, the mean-weight filtering method achieves consistently smaller (better) values

(except Histogram Equalization) of (a) the high frequency difference D for the evaluated
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Figure 5.20: High frequency distortion D (a) for Figure 5.16 and (b) Figure 5.18.
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Figure 5.21: Low frequency intensity heterogeneity S for the original test image 1 in Figure
5.16 (results are shown in the left graph denoted as (a)) and the original test image 2 in
Figure 5.18 (results are shown in the right graph denoted as (b)).

range of filter sizes [3,39] (see Figure 5.20), and (b) low frequency intensity heterogeneity

S for the evaluated filter sizes [10, 200] (see Figure 5.21). Although I included Histogram

equalization method for comparison, the result shows that it is highly sensitive to image

data and it demonstrates poor visual perceptual quality.

Table 5.1 and Table 5.2 numerically summarize the results with four quality metrics

with two different images. In general, an optimal intensity correction technique has to meet

multiple optimization criteria, for example, minimize S, D and N , and maximize C, as de-

fined in the work. For both measured test images, Table 5.1 and Table 5.2 show that the

mean-weight filtering achieves a normalized metric that is about 1.5 to 1.7 times larger than

the second best performing technique.
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Table 5.1: Evaluation results for the test image 1 shown in Figure 5.16 using the four metrics
defined at the beginning of Section 3.2. The four techniques are represented by abbrevia-
tions, such as Histogram equalization (HE), HE with background threshold (HE (threshold)),
Contrast Limited Adaptive Histogram Equalization (CLAHE), and Mean Weight Filtering
MWF (threshold, filter width). To highlight performance results, the best result is shown
as bold and the second best result is shown as italic.

CLSM Image 1 HE HE (26) CLAHE MWF (26,15)
C 17.15 17.34 17.20 16.26
S 74.27 73.40 74.86 66.24
D 29.88 23.93 28.02 21.98
N 330 330 334 0

Table 5.2: Evaluation results for the test image 2 shown in Figure 5.18 using the four metrics
defined at the beginning of Section 3.2. The four techniques are represented by abbrevia-
tions, such as Histogram equalization (HE), HE with background threshold (HE (threshold)),
Contrast Limited Adaptive Histogram Equalization (CLAHE), and Mean Weight Filtering
MWF (threshold, filter width). To highlight performance results, the best result is shown
as bold and the second best result is shown as italic.

CLSM Image 2 HE HE (9) CLAHE MWF (9,21)
C 8.10 13.39 9.49 11.43
S 58.36 65.24 61.88 58.38
D 17.63 27.27 20.60 19.47
N 181 181 105 0
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5.5 Summary

This chapter addressed the problem of intensity correction of fluorescent confocal laser scan-

ning microscope (CLSM) images. CLSM images are frequently used in medical domain for

obtaining 3D information about specimen structures by imaging a set of 2D cross sections

and performing 3D volume reconstruction afterwards. However, 2D images acquired from

fluorescent CLSM images demonstrate significant intensity heterogeneity, for example, due to

photo-bleaching and fluorescent attenuation in depth. I developed an intensity heterogene-

ity correction technique that (a) adjusts intensity heterogeneity of 2D images, (b) preserves

fine structural details, and (c) enhances image contrast, by performing spatially adaptive

mean-weight filtering. The solution is obtained by formulating an optimization problem,

followed by filter design and automated selection of filtering parameters. The proposed fil-

tering method is experimentally compared with several existing techniques by using four

quality metrics, such as contrast, intensity heterogeneity (entropy) in low frequency domain,

intensity distortion in high frequency domain, and saturation. Based on the experiments

and the four quality metrics, the developed mean-weight filtering outperforms other intensity

correction methods by at least a factor of 1.5 when applied to fluorescent CLSM images.

The experimental results obtained with synthetic images and measured images were dis-

cussed in the sections above. Here, I discuss two issues related to kernel size selection and

quality metric normalization.

Kernel size selection: I provided a method for automatic selection of a kernel size that

optimizes the global image saliency. However, there might be image cases with a mixture of

sub-regions that require different kernel sizes per one image. If a user chooses to select a

kernel size on his own, I would provide the following recommendations: (a) A large kernel

tends to preserve the detail of rather large area, e.g., thick edge or spatial intensity hetero-

geneity in a feature region, and extremely large kernels correct minimally intensities in x-y
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Figure 5.22: Mean weight filtering with different kernel sizes: From left, the kernel width is
equals to 3,7,9,21,51.

plane. (b) A small kernel generates visually salient images by highlighting sharp intensity

changes, e.g., small intensity discontinuities. However, extremely small kernels correct high

frequency intensity change which is typically considered as edge gradient (and need to be

preserved). (c) A kernel size could be selected based on edge thickness: for thin edges, a

smaller kernel size is preferred since only high frequency component should be corrected.

For thick edges, a larger kernel should be used since a low frequency component should be

corrected while preserving a high frequency component. Figure 5.22 show the mean weight

filtering results with different kernel sizes.

Quality metric normalization: One might desire to compare multiple intensity adjust-

ment methods using a combined quality metric. While considering the metrics presented

in Section 3.2, it might not be trivial to decide how to normalize and how to combine the

metrics. It is possible to borrow the normalization approach from the data mining field

[56] and normalize the values C̄, S̄, D̄, N̄ to a fixed range, e.g., [−1, 1] like in the case of

artificial neural networks. The problem of combining multiple metrics could be approached

by weighted sum of normalized metrics with the assigned weights according to application

specific importance. For example, the results presented in Table 5.1 and Table 5.2 would

lead to the following overall comparisons assuming equally important metrics in Table 5.3.
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Table 5.3: Comparison using a combined metric formed by summing together normalized
C, S, D and N metrics to [−1, 1].

CLSM Image 1 HE HE (26) CLAHE MWF (26,15)
Combined metric 0.225 0.483 0.275 0.750

CLSM Image 2 HE HE (9) CLAHE MWF (9,21)
Combined metric 0.500 0.250 0.465 0.859

Based on Table 5.3, the mean-weight filtering method would outperform all other intensity

adjustment methods for the two test images. Other user-driven choices of techniques for

normalization and parameters of metric combination (operators and weights) might be pre-

ferred in other application scenarios.
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Chapter 6

CONCLUSIONS

This dissertation addressed the problem of three-dimensional volume reconstruction of im-

age data obtained by fluorescent confocal laser scanning microscopes (CLSM). The main

purpose of this dissertation is to provide a unified framework of three-dimensional volume

reconstruction from CLSM data with performance evaluations and a registration decision

support system. The challenges of the proposed problem arise from the characteristics of

cellular level fluorescent CLSM data, such as extremely high morphological distortions (de-

formations) of imaged structures, and unpredictable spatial intensity heterogeneity, such as

intensity variations both in lateral and axial plane. The main contribution of this disserta-

tion is described in Section 1.1, such as the presentation of (1) the three-dimensional volume

reconstruction framework, (2) automation procedures, (3) the registration decision support

system, (4) registration accuracy evaluations, (5) sub-volume pre-processing techniques, (6)

the automated feature matching technique, (7) web-based collaborative tools, (8) the fully-

automated registration technique, and (9) the intensity correction technique.

In Chapter 2, I proposed a three-dimensional volume reconstruction framework and a

registration decision support system. The main goal of the volume reconstruction is to ob-

tain high resolution image frames by mosaicking (stitching together) spatial tiles that came

from the same depth of a sub-volume, align sub-volumes (physical sections) from multiple

cross sections, evaluate the accuracy of volume reconstruction using multiple techniques,

and visualize the reconstructed volumes in a three-dimensional virtual reality environment

for user-driven or quantitative analysis. The framework consists of three main steps, such

as sub-volume pre-processing, automated alignment, and post-processing techniques. The
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proposed framework is unique in terms of forming a complete system for medical inspection

of three-dimensional volumes reconstructed from CLSM images. In addition, I proposed the

problem of optimal registration decisions during the volume reconstruction. The registration

decisions of interest included image spatial size (image sub-area size), transformation model

(rigid or affine), invariant registration feature (intensity or morphology), and automation

level (manual or semi-automated). I provided mechanisms for evaluating the tradeoffs of

each registration decision in terms of 3D volume reconstruction accuracy, repeatability and

computational requirements.

The sub-volume preprocessing step in Chapter 3 focus on techniques required for auto-

mated 3D volume reconstruction process, which consists of sub-volume intensity analysis,

tile mosaicking, segmentation, and feature detection. Frame selection and mosaicking (man-

ual, semi-automated, and fully automated) steps are performed regardless which registration

methods the volume reconstruction uses, e.g., 2D or 3D information. In the case of using

2D information for registration, the selected frame from the sub-volume analysis process is

further needed through entire registration process, such as 2D segmentation, feature match-

ing, and intensity-based optimization. Segmentation and feature detection processes are

performed based on the dimensionality of registration method, such as region segmentation

followed by centroid computation in 2D case, and the volume segmentation followed by cen-

troid trajectory computation in 3D case.

The sub-volume alignment techniques are proposed in Chapter 4. The main purpose of

this step is to acquire an optimal registration transformation by performing feature match-

ing using multiple automation levels followed by matching refinements in different optimal-

ity criteria. I also report accuracy evaluations for proposed registration methods including

manual (pixel-based), semi-automatic (region centroid feature-based) and fully automatic

(correlation-based) registration techniques by evaluating two groups of human subjects (ex-

perts and novices). The study demonstrates significant benefits of automation for 3D volume

reconstruction in terms of achieved accuracy, consistency of results and performance time.
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In addition I presented a prototype solution for 3D medical volume reconstruction using

web services. For optimal sub-volume alignment, matching refinements are performed in

two different senses: optional intensity-based optimization for 2D alignment and registration

optimization based on trajectory fusion using 3D information. The intensity-based optimiza-

tion showed improved alignment accuracy for two out of the three test image pairs. The

registration optimization approaches using trajectory fusion is aimed at preserving morpho-

logical smoothness of medical structures inside of the reconstructed 3D volume by evaluating

two metrics: morphological continuity at boundaries (end point discontinuity) and global

smoothness (polynomial curve fitting residual).

In Chapter 5, I provided new image enhancement technique which corrects spatial inten-

sity heterogeneity problems for enhanced visualization of fluorescent CLSM imagery. The

developed technique, denoted as mean-weight filtering, enhances image stacks by adjusting

intensity heterogeneity of image frames, preserving fine structural details, and enhances im-

age contrast. The solution is obtained by formulating an optimization problem, followed by

filter design and automated selection of filtering parameters. The proposed filtering method

is experimentally compared with several existing techniques by using four quality metrics,

such as contrast, intensity heterogeneity (entropy) in low frequency domain, intensity dis-

tortion in high frequency domain and saturation.

Provided methods have been researched and fully implemented into the Image to knowl-

edge (I2K) mainframe of the National Center for Supercomputing Applications (NCSA). In

particular, the web-enabled software packages provide extremely useful volume reconstruc-

tion tools to end-users that minimize laborious and time intensive data preparation, has

great impact on the researchers who would make registration decision on CLSM data, and

provide a comprehensive educational resources of computerized three-dimensional volume

reconstruction process and analysis to a number of medical researchers and experts in clini-

cal domain.

153



The whole is greater than the sum of its parts - Max Wertheimer

The whole is equal to the sum of its parts - Euclid
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