
Towards a Universal, Quantifiable, and Scalable File Format Converter

Kenton McHenry, Rob Kooper, Peter Bajcsy
National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign, Urbana, IL
{kmchenry,kooper,pbajcsy}@ncsa.uiuc.edu

Abstract. This paper addresses the problem of design-
ing a universal file format converter. File format conver-
sion is a necessary part of data dissemination and cura-
tion. Complete and robust converters however are hard
to find and build due to the abundance of file formats,
the fact that many formats are closed, and the complexi-
ties within individual format specifications. On the other
hand many software applications exist that are capable
of performing some degree of data conversion between
a subset of the available formats. To take advantage of
this we introduce a data structure called an I/O-Graph
to store the available input and output formats of these
applications. Based on a concept of imposed code reuse
we use this to develop a service, NCSA Polyglot, which
through this graph is capable of performing the larger
union of conversions supported by the underlying soft-
ware. The Polyglot system is designed to be easily exten-
sible, scalable with the number of conversion requests,
and inclusive of all available third party software. Given
a data set of files from a particular domain, we are able
to assign weights to the edges within the I/O-Graph indi-
cating the amount of information retained during a con-
version. These edge weights allow the system to then
choose conversion paths with the least amount of infor-
mation loss.

1. Introduction
The ability to effectively convert between file formats

is an important concern with regards to digital curation
and data dissemination. For every digital file domain
(e.g. documents, images, video, etc...) there exists a
large number of file formats. Having multiple ways of
storing the same data and different software to view that
data hinders the ability to distribute it and by that di-
minishes the lifespan of the data. In order to preserve
data beyond the life of a particular format, which is of-
ten linked to the life of a particular piece of software,
one can convert the file to a format that is: open, stan-
dardized, accepted, and independent of vendors.

The main application driver for our work comes from
the 3D domain that includes both graphics and CAD file
formats. The difficulty of sharing 3D data is fairly in-
famous [6]. It can pretty safely be stated that nearly

every vendor of 3D software has created their own file
format. We have counted over 140 different 3D formats
supported in some form by the 22 software applications
we have looked at. We emphasize “some form of sup-
port” as the code to load the file into the program is
rarely complete with regards to the formats specifica-
tion. While the format associated with the vendor of an
application often supports many attributes and features
such as material properties, texture, and animation this
support is not always available and/or implemented for
other formats. Often times geometry support is consid-
ered sufficient and all other data is dropped. In reality,
what is supported by a particular program’s file loaders
is very much dependent on the vendor and the program-
mers who actually implemented this functionality.

In addition to concerns over implemented functional-
ity one must also be aware of the fact that not every for-
mat supports the same data content. For example not all
graphics formats support animation or particle physics
effects. What does one do when they convert from a
format that does contain a particular feature to one that
does not? The easiest solution is to simply drop that part
of the data. Conversion of the actual data is sometimes
an option, as in the case of moving from a format that
supports a boundary representation (B-Rep) of a surface
(often used in CAD formats) to a faceted representation
(often used in graphics formats). However this is not
always an option as in the case of the inverse of this pro-
cedure, going from a faceted representation to B-Rep,
which is a non-trivial task.

Our objective is to support data sharing, dissemi-
nation, and preservation. Thus, our goal is to design
and build a system that can convert between as many
formats as possible, as robustly as possible, as well
as provide additional services for evaluating conversion
quality, and visualizing file contents. Our approach to
achieve these goals is based on the following two ob-
servations. One, though there is no one real all encom-
passing file format converter, most applications support
conversions between some subset of file formats. For
example, though there is no one standard 3D file, most
3D applications support wavefront *.obj and/or VRML



Figure 1: An overview of the Polyglot conversion system.
Third party applications are documented and scripted so as
to be used as modules within the overall system. A web inter-
face provides one method of user access for file conversion and
visualization.

*.wrl to allow importing and exporting of 3D data from
other applications. Two, though vendors often create
their own proprietary closed file format, they do pro-
vide support for that files loader within their software.
Since it is their proprietary format this loader is likely
the best implementation one could hope for. Since they
often support imports/exports to and from a handful of
other formats we have a means of getting in and out of
this proprietary format.

It is under the above observations that we propose
the notion of imposed code reuse. The benefits of code
reuse are well known and accepted. Having access to
expertly written and tested file loaders would be an in-
credible asset in implementing a universal format con-
verter. On the other hand, software vendors rarely have
it in their interest to provide the needed access to their
code. We define imposed code reuse as the wrapping
of 3rd party software, utilizing whatever interfaces the
software vendors make available, to provide API like
access to embedded code. Based on this we have cre-
ated NCSA Polyglot, an extensible conversion service
which takes advantage of conversions available in 3rd
party software. The overall design of NCSA Polyglot
illustrated in Figure 1 can be thought of as a compact
version of the CORBA-based PRE framework used to
create Conversion Central [7, 8]. However here our sole
focus is conversion. In order to take maximum advan-
tage of 3rd party software we make no assumptions as

to the interfaces provided by 3rd party software. We
wish to take advantage of all software, from those that
are command line driven to applications that have their
functionality locked away behind a graphical user inter-
face (GUI). Our largest contribution within NCSA Poly-
glot however is in providing a framework for measuring
the quality of individual conversions and allowing for
the use of this information in the choosing of optimal
conversion paths (i.e. paths that will result in the least
information loss between formats).

In the next section we describe the design of the con-
version system. In Section 2.1 we describe the I/O-
Graph data structure which we use to store the formats
supported by each application. In Section 2.2 we de-
scribe how we perform the conversions stored in this
graph in an automated manner and in Section 2.3 we
describe how the process can be parallelized. In Sec-
tion 2.4 we then describe how we measure information
loss within the 3D domain so as to choose conversion
paths that preserve the most information. In Section 3
we give details on the prototype we have created.

2. Designing the Universal Converter
2.1. I/O-Graphs

We store all conversion information about an appli-
cation within a data structure called an Input/Output-
Graph (see Figure 2). The vertices of this graph repre-
sent the union of all input and output file formats sup-
ported by various applications. The edges within the
graph are directed indicating an application that supports
a conversion from source format A to target format B.
Parallel edges are allowed and indicate multiple appli-
cations capable of performing the same conversion. The
I/O-Graph in Figure 2 contains information for 17 ap-
plications and is densely packed with edges between the
various formats. As mentioned already, direct conver-
sions (i.e those utilizing a single application), are repre-
sented by a single edge in the graph. We however are in-
terested in all possible conversions (i.e. those produced
by chaining together the direct conversions within each
application). This can be accomplished by searching for
a shortest path between a given source and target file for-
mat (assuming for now that fewer conversions are better
in terms of preserving information). A shortest path be-
tween *.lwo and *.stp is shown. The path uses Blender
to first convert the *.lwo file to a *.3ds file and then con-
verts this file to a *.stp file through Adobe 3D Reviewer.

2.2. Automating Conversion Execution
The I/O-Graph contains all the information required

to perform, search for, and chain together conversions
between file formats. If we are to use this information

2



Figure 2: A visual depiction of an I/O-Graph containing information on the following 3D software applications: 3DS Max, Adobe
3D Reviewer, AutoCAD, Blender, CINEMA 4D, Cyberware PlyTool, IDA-STEP, Inventor, Google SketchUp, K-3D, Lightwave 3D,
Maya, NIST VRML/X3D, ParaView, POV-Ray, VTK, and Wings 3D. Supported conversions are represented by directed edges
between the vertices representing a particular format. An example chained conversion is shown, found by searching for the shortest
path between *.lwo and *.stp. The path found uses Blender to first convert to the *.3ds format, then uses Adobe 3D Reviewer to
convert this file into the *.stp format.

3



for a conversion system the only question that remains
is how to automate the actual conversions. For applica-
tions that are command line driven this is trivial enough
to accomplish through one of many available scripting
languages. For GUI based applications however this
isn’t as simple. Many modern applications are Windows
based with only GUI interfaces. To make our system as
flexible as possible we must make no assumptions as to
alternative means of accessing the functionality of these
applications. Thus, in order to automate the interaction
with 3rd party software we chose to make our service
Windows based and use the AutoHotKey scripting lan-
guage. This choice was motivated largely by the need
to utilize the many high-end 3D applications available
only on the Windows OS which have only a GUI and
no other means of interaction. Since most open source
software tends to have a Windows port we felt that we
could choose a Windows based system without sacrific-
ing access to software predominantly found on Linux
machines.

The AutoHotKey scripting language is capable of by-
passing the usual message passing that occurs within the
Windows OS to communicate between windows (which
includes widgets which are instances of windows). Mes-
sages involved with GUI interaction usually come from
a mouse, however, this need not be the case. If the de-
sired message is known in advance it can be sent within
a script at an appropriate time to produce a desired ac-
tion. To obtain these messages tools such as WinSpec-
torSpy1 can be used to capture the message from a sam-
ple interaction. We note that not all windows based GUI
applications use the Windows API widgets and can in-
stead use a light weight widget of its own. In these cases
AutoHotKey allows for the recording of mouse clicks at
specified coordinates to perform GUI based tasks. The
latter approach is not as robust as care must be taken to
ensure the window is sized properly and enough time
is given for the GUI to respond to the click. Regardless,
the AutoHotKey language can be used to effectively turn
a GUI based application into a command line based ap-
plication.

We chose to make the conversion system web based
in a manner similar to other conversion sites2,3,4. As
we are using scripted GUI based applications the choice
seemed natural as a user would likely become annoyed
by windows automatically popping up on their desktop
and the mouse cursor being taken away from them. In
addition, the state of the desktop needs to be known and
1http://www.windows-spy.com
2http://www.ps2pdf.com
3http://www.zamzar.com
4http://media-convert.com

maintained for these scripts to execute in a robust man-
ner. Hiding everything on a remote server behind a web
interface is a convenient way of ensuring this. The sys-
tem consists of a daemon running on a web server where
the needed applications are installed. The daemon sim-
ply monitors a set folder for jobs in the form of sub-
folders containing 3D files and a single text file indicat-
ing the job to perform. Files are uploaded to the “jobs”
folder via a web based interface utilizing JavaScript and
PHP. The job is created by querying the I/O-Graph and
storing the resulting path in a text file as lines containing
a program, an input, and an output format. The daemon
reads this file and performs the action on each line on
each of the files in that directory which match the tar-
get input. At the end of the operation all files matching
the final output format are displayed in the browser for
downloading.

The system, called NCSA Polyglot (after one who
speaks many languages), is easily extended. To add
an additional conversion program one simply needs to
add another script to the systems “ahk” folder. The
scripts, all following a preset convention, contain all the
required information to be used automatically. Each
script is named with an alias for the program (e.g.
A3DReviewer), an underscore, and the operation which
it performs (e.g. open, save, import, export, convert,
monitor, exit, or kill). Depending on the operation the
script will take 0, 1, or 2 arguments indicating the in-
put/output files. The first four lines of the file comprise
a header made up of comments. The first comment in-
dicates the pretty name of the program (e.g. “Adobe 3D
Reviewer”). The second line indicates the file domain
which the program deals with (e.g. document, image,
3D). The last two lines are dependent on the arguments
and contain comma separated lists of valid input/output
formats. The rest of the script is left to carry out the de-
sired operation in a manner that is as robust as possible.
When a new script is added to the “ahk” folder and the
Polyglot daemon is restarted it will examine the headers
of each script to reconstruct a new I/O-Graph. When a
user uploads files to the system the I/O-Graph will be
queried for the job to perform and the corresponding
scripts will be executed accordingly. Script operations
such as “monitor”, “exit”, and “kill” take no arguments
and are instead used by the Polyglot daemon to make the
overall system more robust to errors within the 3rd party
applications. We note that these scripts are not very dif-
ficult to create and the largest thus far has been only 110
lines long.

In addition to the web interface we have built an API
within Java to allow programmers to make conversion

4



requests to a Polyglot server from within another appli-
cation. For each request a thread is created that uploads
the request, waits for the converted file, and then down-
loads the resulting file to a specified folder.

2.3. Computational Scalability
As mentioned in the previous section the Polyglot

daemon monitors a folder for conversion jobs. One can
parallelize the conversion system by making use of a file
lock and sharing the folder across multiple machines.
One machine can be set up as if it were a stand alone
system and share its “jobs” folder. Other machines with
installed Polyglot daemons can then be setup to point
to this shared folder rather than their own local copy.
Since the bottleneck in the system is the actual con-
versions through 3rd party applications, the cost of dis-
tributing files through a shared folder is negligible and
thus we would expect the overall computation time to
scale as 1/n with added CPU’s. We could use this same
method to parallelize execution on machines with multi-
core processors as well. Even if the installed 3rd party
applications are not designed to take advantage of mul-
tiple processors we can effectively run one instance of
each application on each core by using the described
method on multiple virtual machines installed on the
same physical machine.

2.4. Conversion Quality
The quality of a conversion depends on both the for-

mats involved and the implementations of the loaders
within the software used for the conversion (Figure 3).
As mentioned earlier not all formats support the same
information so parts of the actual content is sometimes
converted or dropped (see Table 1). Also the entire spec-
ification for each file format is often not implemented
within every applications file loader, so information is
lost in this way as well. In order to choose the optimal
conversion path between two formats we really need to
have some estimate of the information lost along each
path. In other words, we need to assign a weight to each
edge in the I/O-Graph that indicates how good the con-
version is along that edge.

In order to assign these weights we must compare the
3D content, independent of format, before and after a
conversion. Various measures of 3D similarity are avail-
able [1], each capturing some aspect of what it means for
objects to be similar. We list a few possible measures be-
low and point out that the choice of measure should be
dependent on the needs of the conversion system. Note
that the measures listed here consider only geometry.

• Statistics: The mean and standard deviation of the
vertices within the 3D model are compared by con-

Figure 3: An example of the kind of noise that can occur dur-
ing conversions (top: the original model in *.stp format, bot-
tom: the model after conversion to *.igs and back using Adobe
3D Reviewer and Cyberware’s PlyTool). In this example all
faces were lost and extra edges were added.

catenating their values into a 1D feature vector and
using the Euclidean distance as a measure of dif-
ference between two such points. An alternative
would be to use the Mahalanobis distance. Since
this measure uses vertex positions it is sensitive to
the size of the model and somewhat sensitive to the
model’s shape. Being simple this measure can be
computed fairly quickly.

• Surface Area [2]: The sum of all faces within
the model. Also sensitive to size and shape of the
model this measure is invariant to various transfor-
mations on the 3D shape.

• Spin Images [4]: This technique records within a
2D histogram the relative positions of the vertices
neighboring each vertex. These 2D histograms can
be clustered, mapped into a 1D feature vector, and
compared using the Euclidean distance between
two such points. This measure ignores surfaces and
is only concerned with the relative vertex positions
within the model. As such this measure is invariant
to rigid transformations of the model. This mea-
sure is useful for capturing a notion of “high level”
similarity between objects (e.g. a chair being more
similar to a table than to an airplane). We note
that this measure requires O(n2) calculations per
model, where n is the number of vertices, and is
thus costly to compute.

• Light Fields [3]: This measure compares model
silhouettes taken from various viewing angles.
Again the resulting 2D images are mapped into 1D
feature vectors and compared via the Euclidean dis-
tance. Since the model is first rotated into a canon-
ical position based on its moments, this measure is
also invariant to rigid transformations. The mea-
sure is fairly efficient to compute and is sensitive to
the shape of the convex hull of the object.

5



Format Geometry Appearance Scene AnimationFaceted Parametric B-Rep CSG Color Material Texture Bump Groups Trans. Lights Views
3ds1 √ √ √ √ √ √ √ √ √ √

igs2 √ √ √ √ √ √ √

obj3 √ √ √ √ √ √ √

ply4 √ √ √ √ √

stp5,6 √ √ √ √ √ √ √

wrl7
√ √ √ √ √ √ √ √ √ √ √

u3d8 √ √ √ √ √ √ √ √ √

x3d9 √ √ √ √ √ √ √ √ √ √ √

Table 1: Content supported by a number of popular 3D file formats (see referenced footnotes for details). Geometry can be
represented as a faceted surface consisting of polygonal faces, parametric surfaces such as NURB patches, a boundary represented
solid, or a solid represented through constructive solid geometry. The models appearance can be as simple as a color value, based
on physical properties of materials such as diffuse and specular components, stored in a texture image, or stored in a bump map as
surface normals at various locations. The scene can consist of groups of objects, transformations on those groups, light positions
and viewing directions. Some files also support animation which can take numerous forms from key frames to motion captured
skeleton rigged models, to simulated physics. One should note that the listed attributes by no means encompasses all possible
features stored in 3D files.

In order to fill in the weights of the I/O-Graph we
must be able to compare the 3D content of a file before
and after conversion. This entails being able to load ev-
ery 3D file available (every possible source format and
every possible target format). This is clearly not an op-
tion, as if we could do this we would not need to use
3rd party software to perform conversions, or for that
matter even need a universal converter. We instead esti-
mate edge weights by supporting only a few formats and
converting from one such format to all reachable formats
and then converting the resulting file back to the original
format (again through the various paths available). The
result is a quality score for the entire conversion (from
source A, to target B, back to A). These scores are as-
signed to each edge along the path and averaged over the
different paths that traverse them. The approach is sim-
ilar to Q-Learning in the field of Artificial Intelligence.
Even if one edge along a path results in a very poor qual-
ity conversion and penalizes an otherwise good conver-
sion on that same path, there will likely be other paths
that use that edge and the average score should stabilize
at some higher value.

3. Experimental Prototype
The Polyglot prototype system has the following ap-

plications scripted: Adobe 3D Reviewer, Blender, Cy-
1http://www.ibrtses.com/opengl/fileformats3d.html
2http://www.wotsit.org
3http://www.fileformat.info/format/wavefrontobj
4http://local.wasp.uwa.edu.au/ pbourke/dataformats
5STEP Part 203: Configuration Controlled Design, ISO 10303-203,
1994.

6STEP Part 214: Core Data for Automotive Mechanical Design Pro-
cesses, ISO 10303-214, 2003.

7The Virtual Reality Modeling Language (VRML)-Part 1: Function
Specification and UTF-8 Encoding ISO/IEC 14772-1, 1997.

8Universal 3D File Format, ECMA 363, 2006.
9Extensible 3D (X3D) Specification, ISO/IEC 19776-1, 2006.

berware PlyTool, K-3D, NIST VRML/X3D Converter,
and VTK. Our experiments utilized a data set consisting
of 40 models (20 *.stp models provided by NARA from
the TWR-841 data set [5] and 20 *.obj models obtained
from the web). Conversions were performed on each
of these files from their source format to every reach-
able target format. If multiple paths existed between
formats the shortest paths (possibly multiple) would be
chosen. Once at the target format the shortest path
back to the source format was traversed (again travers-
ing any equally long parallel paths as well). The result-
ing scores, for each of the four measures outlined, where
tallied and averaged for each edge providing us with
the desired edge weights indicating conversion quality.
Note that since the scores were based on distances (or
difference) and we desire similarity we first flip the val-
ues by subtracting each score from the maximum score.

Once the I/O-graph is weighted by these quality mea-
sures we can, instead of choosing the shortest path be-
tween two formats, use Dijkstra’s shortest weighted path
algorithm to choose paths that will result in the least
amount of information loss. On top of this we can also
make several interesting inquiries. First, which edge re-
tained the most information (i.e. which applications in-
put/output pair preserved the most 3D content)? Second,
which file format is the “best” to convert to. In the con-
text of preservation we define the “best” format as the
one that retains on average the most information when
converted to by other formats. This again can be de-
termined by using Dijkstras algorithm on the weighted
I/O-Graph.

Given the applications scripted in the Polyglot ser-
vice and our data set we observe the following. When
using light fields as our measure, a measure which fo-
cuses on shape, the optimal single conversion is through

6



Figure 4: The I/O-Graph with edge weights assigned from
conversions using 40 test models and compared using the light
fields descriptor. The highlighted path indicates a conversion
path from *.stp to *.obj. The numbers along the edges, rang-
ing from 0 to 100, indicate the average amount of information
retention along each edge. The higher the number, the more
information preserved.

Adobe 3D Reviewer between the *.pdf and *.stp format
(with a value of 61.67). We note that 3D data stored in
*.pdf files are stored internally as *.prc or *.u3d. The
format with the on average highest information reten-
tion from other formats is the *.stp format with a value
of 40.73. Note, these values do not indicate a percentage
of information preserved. They are relative values com-
parable within a particular measure with larger numbers
indicating more information being preserved. In con-
trast, when we use the spin image measure, a measure
that focuses on shape through vertices we get an optimal
single conversion again through Adobe 3D Reviewer,
this time from *.obj to *.pdf (with a value of 59.07)
and we get *.stl as the optimal format (with a value
of 34.89). The *.stp format being a CAD format has
vertices that can change depending on the tessellation
resolution used during conversions. Because of this the
spin image would encounter more variation in these con-
versions than it would with conversions between strictly
graphics formats such as *.obj and *.stl. Overall, based
on the set of conversion applications and data set used,
assuming shape preservation was a top concern, we ob-
serve that *.stp and *.stl are good formats to convert to.

We have performed preliminary experiments with the
scalability of the system. The prototype system con-
sists of three machines, one sharing the Polyglot re-
source folder and the other two referencing that remote
folder and synchronizing via a file lock. Preliminary

Figure 5: The number of parallel Polyglot daemons versus
the running time to convert 20 *.stp files to every reachable
format. The running time drops approximately as 1/n with the
amount of parallelism.

benchmarks indicate an as expected 1/n performance
improvement with a test set of 20 step files being con-
verted to every other reachable file format (see Figure 5).
The conversion takes a total of 33 minutes 6 seconds
with one machine running the Polyglot daemon. With
two daemons running in parallel on two different ma-
chines the conversion takes 16 minutes 40 seconds (i.e.
approximately half the time). With three machines the
total time falls to 11 minutes 40 seconds (i.e. approx-
imately a third of the time). Adding further machines
to the Polyglot service would require only minimal ef-
fort, requiring one to simply install the needed conver-
sion applications on a new machine, install the Polyglot
daemon, and change one line in the daemons configura-
tion file so as to point to the shared folder as opposed to
its local copy.

4. Conclusions
We have constructed an extensible conversion sys-

tem which uses imposed code reuse to take advantage of
3rd party applications in order to perform conversions.
Information about each 3rd party application is stored
in an I/O-Graph which can then be searched for opti-
mal conversion paths. Using AutoHotKey scripting the
found conversion path can be executed automatically as
needed. Using a data set of sample files and comparing
file content before/after conversions, weights are added
to the edges of the I/O-Graph indicating the amount of
information retained.

Aside from the ability to convert between many for-
mats another useful application of such a potentially
“universal” converter is in the form of a “universal”
viewer. Given the ability to view one format in each
domain one could potentially view them all with such
a converter by converting every file to this target format
(see Figure 6). The Polyglot web interface only supports
the direct viewing of wavefront *.obj 3D files. However
it is capable of converting many formats to this format.
A user can upload any file to the server and if a conver-
sion path exists to the *.obj format it will automatically
convert the file and display the 3D model.

7



Figure 6: The web interface to the Polyglot service. Left: Users drag and drop a number of files to the top area, select a target
output file in the list, and click “Upload”. When the files are converted they appear in the area below. Right: The web interface to
Polyglot’s universal viewer. Again users drag files to the top area. This time however there is no choice for the output format as it
is automatically set to the type supported for viewing by the web interface (*.obj). When the files are converted they are displayed
in the area below where the user can then rotate and zoom in on the objects. In the image above the left model was originally in the
STEP (*.stp) format and the right model in the COLLADA (*.dae) format.

Future work includes adding more software to
our Polyglot server. In addition to the scripts in the
experiments of the previous section we have scripted:
Google SketchUp, ParaView, and 3Ds Max. We also
realize that there is likely benefit in having a high level
tool for creating the AutoHotKey scripts, as currently
it is somewhat like hacking. We are looking into the
design implications of creating a graphical tool to
capture sample user interactions with other applications
and automatically generate clean/robust scripts that can
simply be placed into the Polyglot “ahk” folder.

Acknowledgements. This work is supported by a National
Archive and Records Administration (NARA) supplement to
NSF PACI cooperative agreement CA #SCI-9619019.

References

[1] A. Del Bimbo and P. Pala. Content-based retrieval of
3d models. ACM Transactions on Multimedia Computer,

Communications and Applications, 2006.

[2] S. Brunnermeier and S. Martin. Interoperability cost anal-
ysis of the u.s. automotive supply chain. RTI International
Research Publications, March 1999.

[3] D. Chen, X. Tian, Y. Shen, and M. Ouhyoung. On visual
similarity based 3d model retrieval. Eurographics Com-
puter Graphics Forum, 2003.

[4] A. Johnson and M. Hebert. Using spin images for efficient
object recognition in cluttered 3d scenes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1999.

[5] B. Kassel and P. David. Long-term retention of product
model data. Journal of Ship Production, 2007.

[6] K. McHenry and P. Bajcsy. An overview of 3d data con-
tent, file formats and viewers. Technical Report ISDA08-
002, 2008.

[7] C. Pancerella. The use of agents and objects to integrate
virtual enterprises. SANDIA Report 8226, 1998.

[8] R. Whiteside, E. Friedman-Hill, and R. Detry. Pre: A
framework for enterprise integeration. SANDIA Report
8505C, 1998.

8


